Definition 1. A set \(A \) in \(\mathbb{R}^n \) is convex if whenever \(x \) and \(y \) are in \(A \), then
\[
(1 - t)x + ty
\]
is contained in \(A \) for all \(t, 0 \leq t \leq 1 \).

That is, if \(x \) and \(y \) are in \(A \), then the line segment connecting them is contained in \(A \).

Problem 1 (Intersection of two convex sets). If \(A \) and \(B \) are convex sets, then \(A \cap B \) is convex.

Problem 2 (Intersection of arbitrarily many convex sets). Let \(S \) be a non-empty set. For each \(s \in S \), let \(A_s \) be a convex subset of \(\mathbb{R}^n \). Then \(\bigcap_{s \in S} A_s \) is convex. [Note that \(\bigcap_{s \in S} A_s := \{ x \in \mathbb{R}^n \mid x \in A_s \text{ for all } s \in S \} \].

Definition 2. Let \(A \) be a set in \(\mathbb{R}^n \). The convex hull of \(A \), denoted \(C_H(A) \), is the intersection of all convex sets containing \(A \). [Note that the convex hull is convex by Problem 2 and that \(A \) is contained in the convex hull, since \(A \) is contained in at least one convex set, namely \(\mathbb{R}^n \).]

Note 3. The convex hull is the smallest convex set containing \(A \), that is, if \(B \) is a convex set containing \(A \) then the convex hull of \(A \) is contained in \(B \).

Problem 3. Let \(A \) and \(B \) be sets in \(\mathbb{R}^n \), \(A \subseteq B \). Then \(C_H(A) \subset C_H(B) \).

Definition 4. Let \(A := \{v_1, ..., v_m\} \) be a finite set in \(\mathbb{R}^n \). We denote by \(\mathcal{C}(A) \) the set of all convex combinations of \(\{v_1, ..., v_m\} \), that is, \(\mathcal{C}(A) := \{ p_1v_1 + ... p_mv_m \mid p_i \geq 0 \text{ for all } i \text{ and } \sum p_i = 1 \} \).

Proposition 5. Let \(A := \{v_1, ..., v_m\} \) be a finite set in \(\mathbb{R}^n \). Then \(\mathcal{C}(A) \) is convex.

Proof. Let \(p_1v_1 + ... p_mv_m \) and \(q_1v_1 + ... q_mv_m \) be in \(\mathcal{C}(A) \), where \(p_i \geq 0 \) for all \(i \) and \(\sum p_i = 1 \) and \(q_i \geq 0 \) for all \(i \) and \(\sum q_i = 1 \). We have to show that if \(0 \leq t \leq 1 \), then
\[
(1 - t)(p_1v_1 + ... p_mv_m) + t(q_1v_1 + ... q_mv_m)
\]
is in \(\mathcal{C}(A) \). But \((1 - t)(p_1v_1 + ... p_mv_m) + t(q_1v_1 + ... q_mv_m) = ((1 - t)p_1 + t_q1)v_1 + ... + ((1 - t)p_m + t_qm)v_m \). This is in \(\mathcal{C}(A) \) since \((1 - t)p_i + t_qi \geq 0 \) for all \(i \) (since \((1 - t), p_i, t, q_i \) are all \(\geq 0 \)), and since \(\sum (1 - t)p_i + t_qi = (1 - t)\sum p_i + t\sum q_i = (1 - t) \cdot 1 + t \cdot 1 = 1 - t + t = 1 \).

Proposition 6. Let \(A := \{v_1, ..., v_m\} \) be a finite set in \(\mathbb{R}^n \). If \(B \) is a convex set containing \(A \), then \(B \) contains \(\mathcal{C}(A) \).

Proof. Let \(B \) be a convex set containing \(A \). We show by induction on \(m \) (the number of elements in \(A \)) that \(B \) contains \(\mathcal{C}(a) \).

True for \(m = 1 \): If \(A = \{v_1\}A \), then \(v_1 \in B \), since \(B \) contains \(A \). Easy to check that \(\mathcal{C}(A) = \{v_1\} \) in this case.

Assume true for \(m = k \). Then for \(m = k + 1 \), let \(p_i \geq 0 \) and \(\sum p_i = 1 \). To show that \(p_1v_1 + ... p_{k+1}v_{k+1} \) is in \(B \):
Let \(p_{k+1} = t \), so \(0 \leq t \leq 1 \) (why is \(t \leq 1 \)?). If \(t = 1 \) then \(p_1 = ... = p_k = 0 \) (why?), so \(p_1 v_1 + ... + p_{k+1} v_{k+1} \) is just \(v_{k+1} \in A \), so in \(B \). So assume \(0 \leq t < 1 \). Let \(q_i = p_i / (1 - t) \) for \(i = 1, \ldots, k \). Then \(q_i \geq 0 \) and \(q_1 + ... + q_k = (p_1 + ... + p_k) / (1 - t) = (1 - p_{k+1}) / (1 - t) = 1 \). So \(q_1 v_1 + ... + q_k v_k \) is in \(B \) by assumption and
\[
p_1 v_1 + ... + p_{k+1} v_{k+1} = (1 - t)(q_1 v_1 + ... + q_k v_k) + tv_{k+1}\]
is in \(B \) by convexity. \(\square \)

Proposition 7. Let \(A := \{v_1, ..., v_m\} \) be a finite set in \(\mathbb{R}^n \). Then \(C_H(A) = C(A) \), that is, the set of all convex combinations of a finite set is the convex hull of the set.

Proof. We know that \(C(A) \) contains \(A \), is convex, and is contained in every convex set \(B \) containing \(A \). To show \(C(A) \) is the convex hull of \(A \):

The convex hull is the intersection of all convex sets \(B \) containing \(A \). Since \(C(A) \) is contained in each convex set \(B \) containing \(A \) by the previous proposition, then \(C(A) \) is contained in the intersection of all convex sets \(B \) containing \(A \), so \(C(A) \) is contained in the convex hull.

Now let \(B_0 = C(A) \). Then \(B_0 \) is a convex set containing \(A \). So the intersection of all convex sets \(B \) containing \(A \) is contained in any one of the convex sets, in particular is contained in \(B_0 \). So the convex hull is contained in \(B_0 = C(A) \). \(\square \)