42 Invariant basis number

42.1 Definition. A ring R has the invariant basis number (IBN) property if for any free R-module F and for any bases two B, B^{\prime} of F we have $|B|=\left|B^{\prime}\right|$.
42.2 Definition. If a ring R has IBN then for a free R-module F the rank of F is the cardinality of a basis of F.
42.3 Example. Since free \mathbb{Z}-modules correspond to free abelian groups by Proposition 13.3 the ring of integers \mathbb{Z} has IBN.
42.4 Notation. For a ring R and $n>0$ denote $R^{n}:=\bigoplus_{i=1}^{n} R$.
42.5 Example. Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space with an infinite, countable basis. Let R be the ring of all linear maps $V \rightarrow V$:

$$
R=\operatorname{Hom}_{\mathbb{F}}(V, V)
$$

with pointwise addition and with multiplication given by composition. We have

$$
R^{n} \cong R^{m}
$$

for every $m, n \geq 0$ (exercise). Thus R does not have IBN.
42.6 Theorem. Let R be a ring with identity and let F be a free R-module. If F has an infinite basis B then for any other basis B^{\prime} of F we have $|B|=\left|B^{\prime}\right|$.
42.7 Corollary. Let R be a ring with identity. The following conditions are equivalent.

1) R has IBN
2) If F is a free R module with two finite bases B and B^{\prime} then $|B|=\left|B^{\prime}\right|$.
3) For any $m, n>0$ if $R^{m} \cong R^{n}$ then $m=n$.

Proof. Follows directly from Theorem 42.6.

Proof of Theorem 42.6. Let F be a free R module with an infinite basis B. Let B^{\prime} be any other basis of F.

Claim 1. The basis B^{\prime} is infinite.
Indeed, assume that B^{\prime} is finite. Since $F=\langle B\rangle$ thus every element of B^{\prime} is a linear combination of a finite number of elements of B and so $B^{\prime} \subseteq\left\{b_{1}, \ldots, b_{n}\right\}$ where $\left\{b_{1}, \ldots, b_{n}\right\}$ is some finite subset of B. This gives

$$
\left\langle b_{1}, \ldots, b_{n}\right\rangle \supseteq\left\langle B^{\prime}\right\rangle=F
$$

so $\left\langle b_{1}, \ldots, b_{n}\right\rangle=F$. Since B is an infinite set there is $b \in B$ such that $b \notin$ $\left\{b_{1}, \ldots, b_{n}\right\}$. On the other hand $b \in F=\left\langle b_{1}, \ldots, b_{n}\right\rangle$. This is a contradiction since B is a linearly independent set.

Next, assume that B, B^{\prime} are two infinite bases of F. We can also assume that $\left|B^{\prime}\right| \leq|B|$.

Claim 2. Let $T=\left\{b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right\}$ be a finite subset of B^{\prime} and let

$$
B_{T}:=\{b \in B \mid b \in\langle T\rangle\}
$$

Then B_{T} is a finite subset of B.
Indeed, each b_{i}^{\prime} is a linear combination of a finite number of elements of B and so $T \subseteq\left\langle b_{1}, \ldots, b_{n}\right\rangle$ where $\left\{b_{1}, \ldots, b_{n}\right\}$ is some finite subset of B. This gives

$$
B_{T} \subseteq\langle T\rangle \subseteq\left\langle b_{1}, \ldots, b_{n}\right\rangle
$$

By linear independence of B we must then have $B_{T} \subseteq\left\{b_{1}, \ldots, b_{n}\right\}$

Claim 3. $|B| \leq\left|B^{\prime}\right|$.
Indeed, let $S_{B^{\prime}}$ be the set of all finite subsets of B^{\prime}. Note that since B^{\prime} is an infinite set we have $\left|S_{B^{\prime}}\right|=\left|B^{\prime}\right|$.

We have a map of sets

$$
f: B \rightarrow S_{B^{\prime}}
$$

such that $f(b)=\left\{b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right\}$ if we have

$$
b=r_{1} b_{1}^{\prime}+\cdots+r_{k} b_{k}^{\prime}
$$

for some non-zero elements $r_{1}, \ldots, r_{k} \in R$. Since B^{\prime} is a basis of F this map is well defined.

Notice that for $T \in S_{B^{\prime}}$ we have

$$
b \in f^{-1}(T) \quad \text { iff } \quad b \in\langle T\rangle
$$

and so by Claim 2 the set $f^{-1}(T)$ is finite for all $T \in S_{B^{\prime}}$. As a consequence we obtain

$$
|B|=\left|\bigcup_{T \in S_{B^{\prime}}} f^{-1}(T)\right| \leq\left|\bigcup_{T \in S_{B^{\prime}}} \mathbb{N}\right|=\left|S_{B^{\prime}}\right| \cdot \aleph_{0}=\left|B^{\prime}\right| \cdot \aleph_{0}
$$

Since B^{\prime} is an infinite set we have $\left|B^{\prime}\right| \cdot \aleph_{0}=\left|B^{\prime}\right|$, and so $|B| \leq\left|B^{\prime}\right|$.

Since by assumption we had $|B| \leq\left|B^{\prime}\right|$ and by Claim 3 we have $|B| \leq\left|B^{\prime}\right|$ we obtain that $|B|=\left|B^{\prime}\right|$.
42.8 Theorem. If R is a division ring then R has IBN.

Proof. By Corollary 42.7 it is enough to show that if F is a free R-module with two finite bases $B=\left\{b_{1}, \ldots, b_{n}\right\}$ and $B^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ then $n=m$.

We will argue by induction with respect to n
Assume that $n=1$, and so $B=\left\{b_{1}\right\}$. If $B^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ for some $m>1$ then we have

$$
b_{1}^{\prime}=r_{1} b_{1} \quad \text { and } \quad b_{2}^{\prime}=r_{2} b_{1}
$$

for some $r_{1}, r_{2} \in R, r_{1}, r_{2} \neq 0$. Therefore $r_{1}^{-1} b_{1}^{\prime}-r_{2}^{-1} b_{2}^{\prime}=0$ which contradicts the assumption that B^{\prime} is a inearly independent set. As a consequence we must have $m=1$.

Next, assume that $n \geq 1$ is a number such that if a free R-module has a basis consisting of n elements then every other basis of that module also has n elements.

Let F be a free R-module with a basis $B=\left\{b_{1}, \ldots, b_{n+1}\right\}$ consisting of $n+1$ elements and let $B^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ be another basis of F. Since $\left\langle B^{\prime}\right\rangle=F$ we have

$$
b_{n+1}=r_{1} b_{1}^{\prime}+\ldots+r_{m} b_{m}^{\prime}
$$

for some $r_{1}, \ldots, r_{m} \in R$. Also, since $b_{n+1} \neq 0$ we have $r_{i} \neq 0$ for some i. We can assume that $r_{m} \neq 0$. Let $B^{\prime \prime}:=\left\{b_{1}^{\prime}, \ldots, b_{m-1}^{\prime}, b_{n+1}\right\}$. Check: $B^{\prime \prime}$ is a basis of F.

Take the canonical epimorphism

$$
\pi: F \rightarrow F /\left\langle b_{n+1}\right\rangle
$$

Check: since F is a free module with basis $B:=\left\{b_{1}, \ldots, b_{n}, b_{n+1}\right\}$, thus $F /\left\langle b_{n+1}\right\rangle$ is a free module with basis $\left\{\pi\left(b_{1}\right), \ldots, \pi\left(b_{n}\right)\right\}$. On the other hand, since F has a basis $B^{\prime \prime}:=\left\{b_{1}^{\prime}, \ldots, b_{m-1}^{\prime}, b_{n+1}\right\}$ therefore $\left\{\pi\left(b_{1}^{\prime}\right), \ldots, \pi\left(b_{m-1}^{\prime}\right)\right\}$ is a basis of $F /\left\langle b_{n+1}\right\rangle$.

By the inductive assumption we obtain than $n=m-1$, and so $n+1=m$
42.9 Note. Let I be an ideal of R and let M be an R-module. Define:

$$
I M:=\{r m \mid r \in I, m \in M\}
$$

Check:

1) $I M$ a submodule of M.
2) $M / I M$ has a structure of a R / I-module with the multiplication given by

$$
(r+I)(m+I M)=r m+I M
$$

42.10 Theorem. Let R be a ring with identity and let $I \neq R$ be an ideal of R. If R / I has IBN then R also has IBN.

Proof. Let F be a free R-module and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of F. Check: $F / I F$ is a free R / I-module with basis $\left\{b_{1}+I F, \ldots, b_{n}+I F\right\}$.

Since R / I has IBN any basis of $F / I F$ has n elements. As a consequence any basis of F also has n elements.
42.11 Corollary. If R is a commutative ring with identity $1 \neq 0$ then R has IBN.

Proof. Let I be a maximal ideal in R. Then R / I is a field and we have the canonical homomorphism

$$
\pi: R \rightarrow R / I
$$

By Theorem $42.8 R / I$ has IBN, so by Theorem $42.10 R$ also has IBN.
42.12 Note. Corollary 42.11 can be generalized as follows. If

$$
f: R \rightarrow S
$$

is an epimorphism of rings of identity such that S is a division algebra then R has IBN.

