42 Invariant basis number

42.1 Definition. A ring R has the *invariant basis number (IBN)* property if for any free R-module F and for any bases two B, B' of F we have |B| = |B'|.

42.2 Definition. If a ring R has IBN then for a free R-module F the rank of F is the cardinality of a basis of F.

42.3 Example. Since free \mathbb{Z} -modules correspond to free abelian groups by Proposition 13.3 the ring of integers \mathbb{Z} has IBN.

42.4 Notation. For a ring R and n > 0 denote $R^n := \bigoplus_{i=1}^n R$.

42.5 Example. Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space with an infinite, countable basis. Let R be the ring of all linear maps $V \to V$:

$$R = \operatorname{Hom}_{\mathbb{F}}(V, V)$$

with pointwise addition and with multiplication given by composition. We have

 $R^n \cong R^m$

for every $m, n \ge 0$ (exercise). Thus R does not have IBN.

42.6 Theorem. Let R be a ring with identity and let F be a free R-module. If F has an infinite basis B then for any other basis B' of F we have |B| = |B'|.

42.7 Corollary. Let R be a ring with identity. The following conditions are equivalent.

1) R has IBN

2) If F is a free R module with two finite bases B and B' then |B| = |B'|.

3) For any m, n > 0 if $\mathbb{R}^m \cong \mathbb{R}^n$ then m = n.

Proof. Follows directly from Theorem 42.6.

Proof of Theorem 42.6. Let F be a free R module with an infinite basis B. Let B' be any other basis of F.

Claim 1. The basis B' is infinite.

Indeed, assume that B' is finite. Since $F = \langle B \rangle$ thus every element of B' is a linear combination of a finite number of elements of B and so $B' \subseteq \{b_1, \ldots, b_n\}$ where $\{b_1, \ldots, b_n\}$ is some finite subset of B. This gives

$$\langle b_1, \ldots, b_n \rangle \supseteq \langle B' \rangle = F$$

so $\langle b_1, \ldots, b_n \rangle = F$. Since *B* is an infinite set there is $b \in B$ such that $b \notin \{b_1, \ldots, b_n\}$. On the other hand $b \in F = \langle b_1, \ldots, b_n \rangle$. This is a contradiction since *B* is a linearly independent set.

Next, assume that B, B' are two infinite bases of F. We can also assume that $|B'| \leq |B|$.

Claim 2. Let $T = \{b'_1, \ldots, b'_k\}$ be a finite subset of B' and let

$$B_T := \{ b \in B \mid b \in \langle T \rangle \}$$

Then B_T is a finite subset of B.

Indeed, each b'_i is a linear combination of a finite number of elements of B and so $T \subseteq \langle b_1, \ldots, b_n \rangle$ where $\{b_1, \ldots, b_n\}$ is some finite subset of B. This gives

$$B_T \subseteq \langle T \rangle \subseteq \langle b_1, \dots, b_n \rangle$$

By linear independence of B we must then have $B_T \subseteq \{b_1, \ldots, b_n\}$

Claim 3. $|B| \le |B'|$.

Indeed, let $S_{B'}$ be the set of all finite subsets of B'. Note that since B' is an infinite set we have $|S_{B'}| = |B'|$.

We have a map of sets

$$f: B \to S_{B'}$$

such that $f(b) = \{b_1', \dots, b_k'\}$ if we have

$$b = r_1 b_1' + \dots + r_k b_k'$$

for some non-zero elements $r_1, \ldots, r_k \in R$. Since B' is a basis of F this map is well defined.

Notice that for $T \in S_{B'}$ we have

$$b \in f^{-1}(T)$$
 iff $b \in \langle T \rangle$

and so by Claim 2 the set $f^{-1}(T)$ is finite for all $T \in S_{B'}$. As a consequence we obtain

$$|B| = |\bigcup_{T \in S_{B'}} f^{-1}(T)| \le |\bigcup_{T \in S_{B'}} \mathbb{N}| = |S_{B'}| \cdot \aleph_0 = |B'| \cdot \aleph_0$$

Since B' is an infinite set we have $|B'| \cdot \aleph_0 = |B'|$, and so $|B| \le |B'|$.

Since by assumption we had $|B| \le |B'|$ and by Claim 3 we have $|B| \le |B'|$ we obtain that |B| = |B'|.

42.8 Theorem. If R is a division ring then R has IBN.

Proof. By Corollary 42.7 it is enough to show that if F is a free R-module with two finite bases $B = \{b_1, \ldots, b_n\}$ and $B' = \{b'_1, \ldots, b'_m\}$ then n = m.

We will argue by induction with respect to n

Assume that n = 1, and so $B = \{b_1\}$. If $B' = \{b'_1, \ldots, b'_m\}$ for some m > 1 then we have

$$b_1' = r_1 b_1$$
 and $b_2' = r_2 b_1$

for some $r_1, r_2 \in R$, $r_1, r_2 \neq 0$. Therefore $r_1^{-1}b'_1 - r_2^{-1}b'_2 = 0$ which contradicts the assumption that B' is a inearly independent set. As a consequence we must have m = 1.

Next, assume that $n \ge 1$ is a number such that if a free R-module has a basis consisting of n elements then every other basis of that module also has n elements.

Let F be a free R-module with a basis $B = \{b_1, \ldots, b_{n+1}\}$ consisting of n+1 elements and let $B' = \{b'_1, \ldots, b'_m\}$ be another basis of F. Since $\langle B' \rangle = F$ we have

$$b_{n+1} = r_1 b_1' + \ldots + r_m b_m'$$

for some $r_1, \ldots, r_m \in R$. Also, since $b_{n+1} \neq 0$ we have $r_i \neq 0$ for some *i*. We can assume that $r_m \neq 0$. Let $B'' := \{b'_1, \ldots, b'_{m-1}, b_{n+1}\}$. Check: B'' is a basis of F.

Take the canonical epimorphism

$$\pi \colon F \to F/\langle b_{n+1} \rangle$$

Check: since F is a free module with basis $B := \{b_1, \ldots, b_n, b_{n+1}\}$, thus $F/\langle b_{n+1} \rangle$ is a free module with basis $\{\pi(b_1), \ldots, \pi(b_n)\}$. On the other hand, since F has a basis $B'' := \{b'_1, \ldots, b'_{m-1}, b_{n+1}\}$ therefore $\{\pi(b'_1), \ldots, \pi(b'_{m-1})\}$ is a basis of $F/\langle b_{n+1} \rangle$.

By the inductive assumption we obtain than n = m - 1, and so n + 1 = m

42.9 Note. Let I be an ideal of R and let M be an R-module. Define:

$$IM := \{rm \mid r \in I, \ m \in M\}$$

Check:

- 1) IM a submodule of M.
- 2) M/IM has a structure of a R/I-module with the multiplication given by

$$(r+I)(m+IM) = rm + IM$$

42.10 Theorem. Let R be a ring with identity and let $I \neq R$ be an ideal of R. If R/I has IBN then R also has IBN.

Proof. Let F be a free R-module and let $B = \{b_1, \ldots, b_n\}$ be a basis of F. Check: F/IF is a free R/I-module with basis $\{b_1 + IF, \ldots, b_n + IF\}$.

Since R/I has IBN any basis of F/IF has n elements. As a consequence any basis of F also has n elements.

42.11 Corollary. If R is a commutative ring with identity $1 \neq 0$ then R has IBN.

Proof. Let I be a maximal ideal in R. Then R/I is a field and we have the canonical homomorphism

$$\pi \colon R \to R/I$$

By Theorem 42.8 R/I has IBN, so by Theorem 42.10 R also has IBN.

42.12 Note. Corollary 42.11 can be generalized as follows. If

 $f \colon R \to S$

is an epimorphism of rings of identity such that ${\cal S}$ is a division algebra then ${\cal R}$ has IBN.