
42 Invariant basis number

42.1 Definition. A ring R has the invariant basis number (IBN) property if for
any free R-module F and for any bases two B, B′ of F we have |B| = |B′|.

42.2 Definition. If a ring R has IBN then for a free R-module F the rank of
F is the cardinality of a basis of F .

42.3 Example. Since free Z-modules correspond to free abelian groups by
Proposition 13.3 the ring of integers Z has IBN.

42.4 Notation. For a ring R and n > 0 denote Rn :=
⊕n

i=1 R.

42.5 Example. Let F be a field and let V be an F-vector space with an infinite,
countable basis. Let R be the ring of all linear maps V → V :

R = HomF(V, V )

with pointwise addition and with multiplication given by composition. We have

Rn ∼= Rm

for every m,n ≥ 0 (exercise). Thus R does not have IBN.

42.6 Theorem. Let R be a ring with identity and let F be a free R-module. If
F has an infinite basis B then for any other basis B′ of F we have |B| = |B′|.

42.7 Corollary. Let R be a ring with identity. The following conditions are
equivalent.
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1) R has IBN

2) If F is a free R module with two finite bases B and B′ then |B| = |B′|.

3) For any m,n > 0 if Rm ∼= Rn then m = n.

Proof. Follows directly from Theorem 42.6.

Proof of Theorem 42.6. Let F be a free R module with an infinite basis B. Let
B′ be any other basis of F .

Claim 1. The basis B′ is infinite.

Indeed, assume that B′ is finite. Since F = 〈B〉 thus every element of B′ is a
linear combination of a finite number of elements of B and so B′ ⊆ {b1, . . . , bn}
where {b1, . . . , bn} is some finite subset of B. This gives

〈b1, . . . , bn〉 ⊇ 〈B′〉 = F

so 〈b1, . . . , bn〉 = F . Since B is an infinite set there is b ∈ B such that b 6∈
{b1, . . . , bn}. On the other hand b ∈ F = 〈b1, . . . , bn〉. This is a contradiction
since B is a linearly independent set.

Next, assume that B, B′ are two infinite bases of F . We can also assume that
|B′| ≤ |B|.

Claim 2. Let T = {b′1, . . . , b′k} be a finite subset of B′ and let

BT := {b ∈ B | b ∈ 〈T 〉}

Then BT is a finite subset of B.

Indeed, each b′i is a linear combination of a finite number of elements of B and
so T ⊆ 〈b1, . . . , bn〉 where {b1, . . . , bn} is some finite subset of B. This gives

BT ⊆ 〈T 〉 ⊆ 〈b1, . . . , bn〉
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By linear independence of B we must then have BT ⊆ {b1, . . . , bn}

Claim 3. |B| ≤ |B′|.

Indeed, let SB′ be the set of all finite subsets of B′. Note that since B′ is an
infinite set we have |SB′ | = |B′|.

We have a map of sets
f : B → SB′

such that f(b) = {b′1, . . . , b′k} if we have

b = r1b
′
1 + · · ·+ rkb

′
k

for some non-zero elements r1, . . . , rk ∈ R. Since B′ is a basis of F this map is
well defined.

Notice that for T ∈ SB′ we have

b ∈ f−1(T ) iff b ∈ 〈T 〉

and so by Claim 2 the set f−1(T ) is finite for all T ∈ SB′ . As a consequence we
obtain

|B| = |
⋃

T∈SB′

f−1(T )| ≤ |
⋃

T∈SB′

N| = |SB′| · ℵ0 = |B′| · ℵ0

Since B′ is an infinite set we have |B′| · ℵ0 = |B′|, and so |B| ≤ |B′|.

Since by assumption we had |B| ≤ |B′| and by Claim 3 we have |B| ≤ |B′| we
obtain that |B| = |B′|.

42.8 Theorem. If R is a division ring then R has IBN.
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Proof. By Corollary 42.7 it is enough to show that if F is a free R-module with
two finite bases B = {b1, . . . , bn} and B′ = {b′1, . . . , b′m} then n = m.

We will argue by induction with respect to n

Assume that n = 1, and so B = {b1}. If B′ = {b′1, . . . , b′m} for some m > 1
then we have

b′1 = r1b1 and b′2 = r2b1

for some r1, r2 ∈ R, r1, r2 6= 0. Therefore r−1
1 b′1 − r−1

2 b′2 = 0 which contradicts
the assumption that B′ is a inearly independent set. As a consequence we must
have m = 1.

Next, assume that n ≥ 1 is a number such that if a free R-module has a
basis consisting of n elements then every other basis of that module also has n
elements.

Let F be a free R-module with a basis B = {b1, . . . , bn+1} consisting of n + 1
elements and let B′ = {b′1, . . . , b′m} be another basis of F . Since 〈B′〉 = F we
have

bn+1 = r1b
′
1 + . . .+ rmb

′
m

for some r1, . . . , rm ∈ R. Also, since bn+1 6= 0 we have ri 6= 0 for some i. We
can assume that rm 6= 0. Let B′′ := {b′1, . . . , b′m−1, bn+1}. Check: B′′ is a basis
of F .

Take the canonical epimorphism

π : F → F/〈bn+1〉

Check: since F is a free module with basis B := {b1, . . . , bn, bn+1}, thus
F/〈bn+1〉 is a free module with basis {π(b1), . . . , π(bn)}. On the other hand,
since F has a basis B′′ := {b′1, . . . , b′m−1, bn+1} therefore {π(b′1), . . . , π(b′m−1)}
is a basis of F/〈bn+1〉.

By the inductive assumption we obtain than n = m− 1, and so n+ 1 = m
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42.9 Note. Let I be an ideal of R and let M be an R-module. Define:

IM := {rm | r ∈ I, m ∈M}

Check:

1) IM a submodule of M .

2) M/IM has a structure of a R/I-module with the multiplication given by

(r + I)(m+ IM) = rm+ IM

42.10 Theorem. Let R be a ring with identity and let I 6= R be an ideal of R.
If R/I has IBN then R also has IBN.

Proof. Let F be a free R-module and let B = {b1, . . . , bn} be a basis of F .
Check: F/IF is a free R/I-module with basis {b1 + IF, . . . , bn + IF}.

Since R/I has IBN any basis of F/IF has n elements. As a consequence any
basis of F also has n elements.

42.11 Corollary. If R is a commutative ring with identity 1 6= 0 then R has
IBN.

Proof. Let I be a maximal ideal in R. Then R/I is a field and we have the
canonical homomorphism

π : R→ R/I

By Theorem 42.8 R/I has IBN, so by Theorem 42.10 R also has IBN.

42.12 Note. Corollary 42.11 can be generalized as follows. If

f : R→ S

is an epimorphism of rings of identity such that S is a division algebra then R
has IBN.
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