Name:
Math 141- Midterm Exam \#3 - November 12, 2007

1. (20 points) Let $f(x)=\frac{x}{x^{2}+1}$. Find the global maximum and global minimum values of $f(x)$ on the interval $[0,2]$.
2. (5 points) Complete the following definition. A function $f(x)$ has a local minimum at $x=c$ if \cdots.

3. (15 points)

Let $f(x)=\frac{x}{x+2}$. Verify that $f(x)$ satisfies the hypotheses of the Mean Value Theorem on the interval $[1,4]$. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
4. (15 points) The graph of the derivative f^{\prime} of a function f is shown.
a. On what intervals is f increasing or decreasing?
b. At what values of x does f have a local maximum or minimum?
c. At what values of x does the graph of $f(x)$ have inflection points?
5. (20 points) Let

$$
f(x)=\left(x^{2}-1\right)^{2 / 3}
$$

Then:

$$
f^{\prime}(x)=\frac{4}{3} \frac{x}{\left(x^{2}-1\right)^{1 / 3}}, \quad f^{\prime \prime}(x)=\frac{4}{9} \frac{\left(x^{2}-3\right)}{\left(x^{2}-1\right)^{4 / 3}}
$$

a. Find all x and y intercepts and any asymptotes.
b. Find the intervals where $f(x)$ is increasing or decreasing and any local maximums or local minimums.
c. Find the intervals where $f(x)$ is concave up or concave down, and determine any inflection points.
d. Neatly sketch the graph of $y=f(x)$, Label the x and y coordinates of any intercepts, local extrema and inflection points.
6. (15 points) Find the dimensions of the rectangle of largest area that has its base on the x-axis and its other two vertices above the x-axis and lying on the parabola $y=8-x^{2}$.
7. (10 points) Evaluate the following limits:

$$
\text { a. } \lim _{x \rightarrow 0^{+}} \frac{\cos x}{x}, \quad \text { b. } \lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}
$$

