NAME:

Math 141A- Final Exam - December 8, 2014

Instructions: The exam is worth 150 points. You should not use any aids, electronic or paper, other than a writing utensil.

1. (15 points) Evaluate the following integrals:
a. $\int_{0}^{\pi} \sin (3 t) d t$.
b. $\int \frac{4 x+2}{x^{2}+x-1} d x$.
c. $\int_{0}^{2} y^{2} \sqrt{1+y^{3}} d y$
d. $\int x^{3}+2 x^{2}+\frac{1}{x} d x$.
e. $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}$
2. (15 points) a. Estimate the area under the curve $y=1+x^{2}$ for $0 \leq x \leq 2$ using 4 intervals and right hand endpoints (i.e. compute R_{4}.) Is your answer an overestimate or underestimate? Explain.
b. Now find the exact area by computing the following definite integral using the definition as a limit of Riemann sums!:

$$
\int_{0}^{2} 1+x^{2} d x
$$

You may find one of the following formulas useful:
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
3. (10 points) State both parts of the Fundamental Theorem of Calculus.
4. (10 points) Use the Fundamental Theorem of Calculus to find the derivative $g^{\prime}(x)$: a. $g(x)=\int_{3}^{x} e^{t^{2}} d t$.
b. $g(x)=\int_{0}^{x^{2}} \cos (t) d t$.
5. (10 points) Consider the following limit:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}} \cdot \frac{1}{n} .
$$

Recognize this limit as a definite integral and then evaluate it by evaluating the integral.
6. (10 points) Let $f(t)=t \sqrt{4-t^{2}}$. Find the absolute maximum and absolute minimum of $f(t)$ on the interval $[-1,2]$.
7. (5 points) Using the Fundamental Theorem of Calculus we conclude:

$$
\int_{-1}^{2} 3 x^{-4} d x=-\left.x^{-3}\right|_{-1} ^{2}=-\left.\frac{1}{x^{3}}\right|_{-1} ^{2}=-(1 / 8+1)=-9 / 8 .
$$

Why is this mistaken?
8. (5 points) If $f(x)$ represents the slope of a trail at a distance x miles from the start, what does $\int_{2}^{6} f(x) d x$ represent?
9. (10 points) The formula for the derivative of a function $f(x)$ at the value $x=a$ is given by:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if it exists. Explain in words, and using diagrams, where this formula comes from.
10. (10 points) Let $f(x)=x^{3}+2 x+1$.
a. Find the equation of the tangent line at $x=2$.
b. Prove $f(x)$ has one real root.
11. (10 points) Complete the definitions:
a. $\lim _{x \rightarrow a} f(x)=L$ if \ldots
b. A function $f(x)$ is continuous at $x=a$ if ...
12. (10 points) Find $\frac{d y}{d x}$.
a. $y=x e^{x}$
b. $y=6 x^{2}+3 x+5$
c. $y=(1+\cos (x))^{10}$
d. $y=\frac{1+x}{1-\ln (x)}$
e. $x y^{2}+\cos (y)=2 x$

13. (15 points)

a. Find the equation of the line passing through $(-2,1)$ and parallel to the line $2 x+3 y=$ 2.
b. Solve the inequality $x^{2}-x-6 \geq 0$.
c. Find $\log _{3}(27)$.
d. Write $\frac{\cos x}{1+x}+\frac{x}{2+x}$ as a single fraction.
e. Neatly sketch and label the graph of $y=2 \sin x$ and $y=3+\ln x$ on the same axes.
14. (5 points) Let $f(x)=2 x^{2}+3 x+1$. Find an x value c such that c satisfies the conclusion of the Mean Value Theorem for $f(x)$ on the interval $[1,4]$.
15. (10 points) Below is the graph of $y=f(t)$ for $0 \leq t \leq 27$. (Please note the scale on the axis, each unit is 1.5)

a. For what intervals is $f(t)$ increasing or decreasing? Concave up or concave down?
b. Estimate $f^{\prime}(15)$.
c. Estimate $\int_{0}^{6} f(t) d t$.
d. Now define $g(x)=\int_{0}^{x} f(t) d t$. For what intervals is $g(x)$ increasing or decreasing?
e. What is $g^{\prime}(12)$?
f. At what values does $g(x)$ obtain local maximums? Global maximum?

