Math 141A- Fall 2014- Midterm 1

Problem \#	Max Score	Score
1	15	
2	20	
3	20	
4	10	
5	20	
6	15	

TOTAL
this page blank

Math 141A- Midterm Exam \#1 - September 25, 2014

1. (15 points) True or false:
-- a. A function which is differentiable at $x=a$ must also be continuous at $x=a$.
\qquad b. The composition of two continuous functions is also continuous.
\qquad c. Suppose $f(x)$ is continuous on $[0,2]$ and $f(0)=2, f(2)=5$. Then the intermediate value theorem implies $f(x)$ does not have a root in $(0,2)$.
- d. Suppose $y=a$ is a horizontal asymptote for $f(x)$. Then the graph of $y=f(x)$ does not cross the line $y=a$.
\qquad e. $f(x)=\frac{\sin x}{x}$ has a removable discontinuity at $x=0$.

2. (20 points)

a. Give the $\epsilon-\delta$ definition for $\lim _{x \rightarrow a} f(x)=L$.
b. Use the definition to prove that

$$
\lim _{x \rightarrow 3}(2 x+8)=14
$$

3. (20 points) Evaluate the following limits. If the limit does not exist then write DNE.
a. $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+5}}{2 x-3}$
b. $\lim _{x \rightarrow 3^{+}} \frac{5-3 x}{(x-3)(x-5)}$
c. $\lim _{x \rightarrow 6} \sin x$.
d. Suppose $\lim _{x \rightarrow 2} f(x)=3$ and $\lim _{x \rightarrow 2} g(x)=-1$. Evaluate $\lim _{x \rightarrow 2} \frac{f(x)+3\left(g(x)^{2}\right)}{\sqrt{f(x)}}$.
4. (10 points) Neatly sketch the graph of a single function $f(x)$ which has the following properties:

- $\lim _{x \rightarrow 3^{+}} f(x)=2, \lim _{x \rightarrow 3^{-}} f(x)=\infty, \quad f(3)=1$.
- $f(x)$ is continuous from the right at $x=5$ but not continuous from the left at $x=5$.
- $\lim _{x \rightarrow \infty} f(x)=4, \quad \lim _{x \rightarrow-\infty} f(x)=-1$.
- $f^{\prime}(6)=0$.

5. (20 points) A ball is tossed and has height in feet given at time t seconds by $y(t)=$ $-t^{2}+6 t$.
a. Use the definition of the derivative to prove that $y^{\prime}(t)=-2 t+6$.
b. Find the equation of the tangent line to $y=h(t)$ at the point where $t=2$.
c. What is the ball's average velocity from time $t=1$ to time $t=3$?
d. How fast is the ball moving when it hits the ground?
e. What is the ball's acceleration?

6. (15 points) Above is the graph of a function $y=f(x)$.
a. Find the vertical and horizontal asympotes.
b. Evaluate $\lim _{x \rightarrow \infty} f(x)$.
c. Estimate $f^{\prime}(0)$.
d. Estimate $\lim _{x \rightarrow \infty} f^{\prime}(x)$.
e. On the same axes above carefully sketch a graph of $y=f^{\prime}(x)$

Name:

