1. (50 points) Find $\frac{d y}{d x}$. You do not need to simplify your answers.
a. $y=x e^{\cos x}$
b. $y=\log _{3}(x)$
c. $y=\ln \left(x^{2}+2 x+1\right)$
d. $y=\frac{\sin x}{e^{x}}$
e. $y=x^{\sec x}$
f. $y=x^{2} \sin x \cos x$
g. $y=\sqrt{2+\tan \left(1+x^{3}\right)}$
h. $x y^{2}+5 x^{2}-2 y=10$
i. $y=\sqrt{\frac{\left(x^{2}+1\right)^{5} e^{x}}{x^{2}+2}}$
j. $y=\sin ^{-1}(4 x)$.
2. (10 points) Suppose I deposit $\$ 1000$ in a bank account with continuously compounding interest. After three years time I now have $\$ 1300$. What is the annual rate in percent? (it is ok to leave your answer in terms of \ln.)
3. (10 points) Estimate $\ln (0.99)$ using a linear approximation to an appropriate function.
4. (10 points) Suppose $x y+e^{y}=e$.
a. Find the equation of the tangent line at the point on the curve where $x=0$.
b. Find $y^{\prime \prime}$ at that same point.
5. ($\mathbf{1 0}$ points) A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the builing at a speed of $1.6 \mathrm{~m} / \mathrm{s}$, how fast is the length of his shadow on the building decreasing when he is 4 m from the building? (Hint: use similar triangles)
6. ($\mathbf{1 0}$ points) The equation $x^{2}-x y+y^{2}=3$ represents a "rotated ellipse", that is an ellipse whose axes are not parallel to the coordinate axes. Find the points where this ellipse intersects the x axis (you should get two points). Show that the tangent lines at these points are parallel.
