Math 353 Fall 2016 Midterm Exam Review Sheet

The exam will cover from Chapter 2-7.2 plus other material done in class.
Definitions: You should know each of these definitions and for various types of numbers, you should be able to calculate them in small examples:

- $P(n, r)=n!/(n-r)!-$ the number of ways to make an ordered list of length r from an n element set.
- $C(n, r)$ - The binomial coefficient, equal to the number of r element subsets of an n element set.
- Multinomial coefficients.
- $S(n, r)$ - Stirling number of the $2 n d$ kind, the number of ways to put n distinct balls in r identical boxes with no empty boxes.
- $s(n, r)$ - Stirling number of the 1st kind, the coefficient of x^{r} in $[x]_{n}$.
- $p(n, r)$ - The number of permutations in S_{n} with exactly r cycles (=s(n, r) by theorem)
- Derangements
- C_{n} - the Catalan numbers, including the various objects they count, Catlan sequences, Dyck paths, triangulations, expressions, 231-avoiding permutations, etc..
- $p(n), p_{k}(n)$,
- Ferrer's diagrams of partitions, conjugate of a partition, self-conjugate partitions..
- Tableau and standard tableau
- Permutations avoiding a certain pattern (e.g. 231 on the homework)
- Symmetric polynomials, Schur polynomials.
- Generating function of a sequence
- Euler phi function, formula for it form I/E principle.

Counting Problems:

- Counting and probability problems using principle of multiplication of choice, $C(n, r)$ and $P(n, r)$, knowing when each applies (does order matter, overcounting, etc...). The binomial theorem. (for example Ex: 2.2.1-2.2.3, 2.3.1-2.3.3, all exercises in 2.4) Poker/bridge type problems.
- Counting the number of permutations in S_{n} with a given cycle structure.
- 8 different "occupancy problems" in Table 3.1, know when to apply each.
- Simple combinatorial proofs using binomial coefficients (like 2.3.3B, 2.3.4A)

Other material

- You should know the recurrence relations for $\mathrm{C}(\mathrm{n}, \mathrm{r}), \mathrm{S}(\mathrm{n}, \mathrm{r})$ and $\mathrm{s}(\mathrm{n}, \mathrm{r})$ and combinatorial explanations for the first two. Pascal's triangle.
- Understand how $S(n, r)$ and $s(n, r)$ are change of basis coefficients between two natural bases for polynomials of degree n with no constant term.
- Know the inclusion/exclusion principle and apply it in counting problems. You do not need to know the formula on the top of p .56 but you should be able to figure it out in small examples using I/E principle. For example the argument on p .55 you should be able to replicate, you should be able to solve Problem 4.3.
- Same thing for the formula for the number of derangements.
- Easy combinatorial proofs involving partitions, bijections with Ferrer's diagrams.
- Be able to do the row insertion algorithm and the Robinson-Schensted-Knuth algorithm.
- Write down generating functions for some simple sequences.
- Recurrence relation satisfied by the Catalan numbers and how it is applied to show they count 231avoiding permutations and triangulations.

REVIEW HOMEWORK PROBLEMS!

