Math 353 Homework \#11- Due Monday 12/5/16

1. Use Polya's theorem to compute the number of 5×5 chessboards with 10 red squares, 12 blue squares and 3 green squares, up to symmetry. You will likely need to use a computer algebra system like Maple in the final step.
2. Taking rotational symmetries into account, how many ways are there to color the vertices of a cube so that four are blue, two are red and two are green?
3. Recall that the integer lattice \mathbb{Z}^{3} consists of all points $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ such that a_{1}, a_{2}, a_{3} are integers. Suppose we choose 9 distinct points in \mathbb{Z}^{3}. Prove the line segment between some two of the 9 points contains another point in \mathbb{Z}^{3}. Hint: You can actually show the "another point" may be chosen to be the midpoint.
4. Show that given any 9 distinct natural numbers it is possible to chose 5 whose sum is divisible by 5 .
5. 15.3.4B
