Math 353 Homework \#11- Due Monday 12/5/16

1. Use Polya's theorem to compute the number of 5×5 chessboards with 10 red squares, 12 blue squares and 3 green squares, up to symmetry. You will likely need to use a computer algebra system like Maple in the final step.

Solution: G here is D_{8}. First we calculate $C I(G)$. The elements r and r^{3} have cycle type $x_{1} x_{4}^{6}$ on the 25 squares. The element r^{2} has type $x_{1} x_{2}^{12}$. Since 5 is odd we see all four reflections fix five squares and have type $x_{1}^{5} x_{2}^{10}$. Thus:

$$
C I(G)=\frac{x_{1}^{25}+2 x_{1} x_{4}^{6}+x_{1} x_{2}^{12}+4 x_{1}^{5} x_{2}^{10}}{8}
$$

So to apply Polya we sub in $x_{1}=(r+b+g), x_{2}=\left(r^{2}+b^{2}+g^{2}\right), x_{4}=\left(r^{4}+b^{4}+g^{4}\right)$ and take the coefficient of $r^{10} b^{12} g^{3}$. Using Maple I calculate 185937878.
2. Taking rotational symmetries into account, how many ways are there to color the vertices of a cube so that four are blue, two are red and two are green?

Solution: We have 24 rotational symmetries, as above we need to calculate the cycle index polynomial on the 8 vertices. You should get the following:

$$
C I(G)=\frac{x_{1}^{8}+6 x_{4}^{2}+9 x_{2}^{4}+8 x_{1}^{2} x_{3}^{2}}{24}
$$

Plugging in $x_{1}=(b+r+g), x_{2}=\left(b^{2}+r^{2}+g^{2}\right), x_{3}=\left(b^{3}+r^{3}+g^{3}\right), x_{4}=\left(b^{4}+r^{4}+g^{4}\right.$ we see the coefficient of $b^{4} r^{2} g^{2}$ is $\mathbf{2 2}$.
3. Recall that the integer lattice \mathbb{Z}^{3} consists of all points $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ such that a_{1}, a_{2}, a_{3} are integers. Suppose we choose 9 distinct points in \mathbb{Z}^{3}. Prove the line segment between some two of the 9 points contains another point in \mathbb{Z}^{3}. Hint: You can actually show the "another point" may be chosen to be the midpoint.

Solution:

Reduce each point module 2 so our points now like in $\mathbb{Z} / 2 \mathbb{Z}^{3}$, which has 8 points. By the pigeonhole principle then we have at least two points that reduce to the same, i.e. $\left(a_{1}, a_{2}, a_{3}\right)=\left(b_{1}, b_{2}, b_{3}\right)$ modulo 2 . This means $a_{1}+b_{1}, a_{2}+b_{2}$ and $a_{3}+b_{3}$ are all even. Those the midpoint $\left(\frac{a_{1}+b_{1}}{2}, \frac{a_{2}+b_{2}}{2}, \frac{a_{3}+b_{3}}{2}\right)$ has integer coordinates, as desired.
4. Show that given any 9 distinct natural numbers it is possible to chose 5 whose sum is divisible by 5 .

Solution: Coming soon!
5. 15.3.4B- Show that if there are nine points inside and equilateral triangle of side length 1 unit then there are 2 of these points within $1 / 3$ unit of each other.

Solution: Divide the triangle into 9 smaller equilateral triangles. Removing the three corner triangles we get a hexagon H made up of the six center triangles. If any of the three corner triangles contain two points then we are clearly done. If not then there are at least 6 points in or on the hexagon H. None of them lies on a vertex (since it would be also on a corner). Thus we have six points strictly inside a circle of radius $1 / 3$ passing through the vertices of the hexagon. Now we have reduced the problem to 15.3 .4 A with solution in the back.

