Math 353 Fall 2016 - Homework \#3 Solutions

3.1.5B We have an odd number of balls in each cup, so let these numbers be $2 x+1,2 y+1,2 z+1$ and $2 w+1$ where $x, y, z, w \geq 0$. We need to count solutions to

$$
2 x+1+2 y+1+2 z+1+2 w+1=20
$$

with $x, y, z, w \geq 0$. These are the same as solutions to $x+y+z+w=8$, so there are $\binom{11}{3}=165$ solutions.
3.3.2B Done in class.
3. The $n=0$ case is clear. We have:

$$
\begin{aligned}
B_{0} & =S(0,0) \\
B_{1} & =S(1,0)+S(1,1) \\
B_{2} & =S(2,0)+S(2,1)+S(2,2) \\
B_{3} & =S(3,0)+S(3,1)+S(3,2)+S(3,3) \\
B_{4} & =S(4,0)+S(4,1)+S(4,2)+S(4,3)+S(4,4) \\
\cdots & =\cdots \\
B_{n-1} & =S(n-1,0)+S(n-1,1)+S(n-1,2)+S(n-1,3)+\cdots+S(n-1, n-1)
\end{aligned}
$$

Now multiply the equation for B_{j} by $\binom{n-1}{j}$ and add up to get $\sum_{j=0}^{n-1} B_{j}$. Rather than computing the sum of the right hand sides row by row we do it column by column. The first column contributes:

$$
S(0,0)\binom{n-1}{0}+S(1,0)\binom{n-1}{1}+\cdots S(n-1,0)\binom{n-1}{n-1}
$$

which equals $S(n, 1)$ by 3.3 .2 B . The second column contributes:

$$
S(1,1)\binom{n-1}{1}+S(2,1)\binom{n-1}{2}+\cdots S(n-1,1)\binom{n-1}{n-1}
$$

which equals $S(n, 2)$ by 3.3 .2 B . The penultimate column contributes:

$$
S(n-2, n-2)\binom{n-1}{n-2}+S(n-1, n-2)\binom{n-1}{n-1}
$$

which equals $S(n, n-1)$ by 3.3 .2 B
And the final column is just $S(n-1, n-1)\binom{n-1}{n-1}$ which is equal to 1 , so also $S(n, n)$.
Thus the total sum is $S(n, 1)+S(n, 2)+\cdots+S(n, n)=B_{n}$ as desired.
4. B_{n} counts all ways to partition an n element set. Fix a in the set. Suppose there are j elements that are not in the class with a so j ranges from 0 to $n-1$. The number of such partitions is $\binom{n-1}{j} B_{j}$ since we must choose the j elements and then
partition them in B_{j} ways. So $B_{n}=\sum_{j=0}^{n-1}\binom{n-1}{j} B_{j}$, as desired.
5. This is just the number of solutions to $C_{1}+C_{2}+\cdots+C_{8}=15$, which is $\binom{22}{7}$ by Theorem 3.1.
6. The easiest way to do this problem is imagine the 3 shelves side by side. Instead we can think of one long shelf where we must place all the books together with two dividers, which split the long shelf into the 3 shelves. The total number of ways to do this is just the multinomial coefficient:

$$
\binom{n+r+s+t+2}{n, r, s, t, 2}
$$

7. The first problem just the Stirling number $S(12,4)$ by definition. If the bags are now distinct children, each such arrangement has 4 ! labels with the childrens' names so the answer is $4!S(12,14)$.
8. Using the table of Stirling numbers in the book it's easy to add up the rows and get that the Bell numbers B_{1} through B_{8} are

$$
1,2,5,15,52,203,877,4140,21147
$$

The ratios are $2,2.5,3,3.4,3.9,4.3,4.7,5.1$. So for example it seems that when n gets large, $B_{n} \geq 5 B_{n-1}$ which suggest B_{n} grows exponentially with n, for example bigger than some constant times 5^{n}. Much more is known, the Wikipedia article on the Bell numbers is a good place to start.

