Math 353 Fall 2016 - Homework \#4 Solutions

3.3.6B We prove that

$$
S(n, 4)=\frac{1}{24}\left(4^{n}\right)-\frac{1}{6}\left(3^{n}\right)+\frac{1}{4}\left(2^{n}\right)-\frac{1}{6}
$$

by induction on n. The base case $n=4$ is easy, check that $1=256 / 24-81 / 6+16 / 4-1 / 6$.
Now assume the result is true for $S(k, 4)$ and prove it for $S(k+1,4)$.

$$
\begin{aligned}
S(k+1,4) & =S(k, 3)+4 S(k, 4) \\
& =\frac{1}{2}\left(3^{k-1}-2^{k}+1\right)+4\left(\frac{1}{24}\left(4^{k}\right)-\frac{1}{6}\left(3^{k}\right)+\frac{1}{4}\left(2^{k}\right)-\frac{1}{6}\right.
\end{aligned}
$$

by the known result for $S(k, 3)$ and the induction hypothesis. Now just simplify this to get the desired result.
3.3.8B The key observation here is to choose a nondecreasing integer we only must choose the digits, and then there is a unique answer obtained by placing them in nondecreasing order. So to get a k digit nondecreasing integer we must put k identical balls in 9 boxes labeled 1-9. (there can we no zeroes except for the number 0). There are $\binom{8+k}{8}$ ways to do this. For numbers less than $1,000,000$ we can have $1,2,3,4,5$ or 6 digits. So the final answer is:

$$
\binom{14}{8}+\binom{13}{8}+\binom{12}{8}+\cdots+\binom{9}{8}=5004
$$

total ways.
4.1.5B If two coins are tossed the outcomes $H H, H T, T H, T T$ are all equally likely. So we can think of this problem as sampling with replacement from a set of 4 things. Thus we just need to decide how big s should be for $\Theta(4, s)$ to get >0.9. It turns out that $s=13$ is what we need.
4.1.7B Same as above but now we need $>.99$ which requires s to be 21 .
4.2.1B If you think about this right we have 4 people and 4 jobs. We are looking to assign them to jobs in a way so each person has a different forbidden job. So this problem is precisely equivalent to counting the number of derangements in S_{4}, which is 9 .
4.3.2A See back of the book
4.3.2B Theorem 4.5 states that:

$$
S(n, k)=\frac{1}{k!} \sum_{s=0}^{k-1}(-1)^{s} C(k, s)(k-s)^{n}
$$

We want to prove this formula gives us what is in Theorem 3.5 , namely that $S(n, 1)=S(n, n)=1$ and $S(n, 2)=2^{n-1}-1$.
Theorem 4.5 gives $S(n, 1)=C(1,0) 1^{n}=1$.
It also gives: $S(n, 2)=\frac{1}{2!} \sum_{s=0}^{1}(-1)^{s} C(2, s)(2-s)^{n}$ which is $\frac{1}{2}\left(2^{n}-2\right)=2^{n-1}-1$. Checking for $S(n, n)$ is much harder.

