Math 353 Homework #5- Due Wednesday 10/5/16

1. 5.1.6B (Hint: Use Theorem 3.4 and proceed by induction on n). Let X(n,k) be all possible products of n-k integers from $\{1, 2, \ldots, k\}$, repeats allowed. Divide X(n,k) into two subsets.

2. 5.2.3B (typo in the book here, should be s(n, r) not S(n, r).)

3. We now prove the Catalan numbers are uniquely determined by the recursion above. Suppose $\{d_n \mid n \ge 0\}$ is a sequence such that $d_0 = 1$ and:

$$d_n = \sum_{k=1}^n d_{k-1} d_{n-k}.$$

Prove by induction that $d_n = C_n$.

4. Suppose $w = w_1 w_2 \cdots w_n$ is a permutation of $\{1, 2, \ldots, n\}$ written in one-line notation. Saw that w is 231-avoiding if there do not exist indices i < k < p such that $w_p < w_i < w_k$.

a. Write down the 231 avoiding permutations in S_4 . (Hint: There are 14 of them)

b. Let S_n^{231} be the set of 231-avoiding permutations in S_n . Prove that the size of S_n^{231} satisfies the recursion and conclude from problem 4 that $\#(S_n^{231}) = C_n$. Hint: For an arbitrary 231-avoiding permutation w, consider the position of the letter n in w.

5. 5.3.2B. Hints below.

- First use the recursion to prove that $C_n > n+2$ for n > 3.
- Next prove from the definition that $(n+2)C_{n+1} = (4n+2)C_n$
- Suppose C_n is prime. Prove that C_n divides C_{n+1} .
- Prove that n must then be ≤ 4 .

6. 5.3.8A