1. 5.1.6B (Hint: Use Theorem 3.4 and proceed by induction on n). Let $X(n, k)$ be all possible products of $n-k$ integers from $\{1,2, \ldots, k\}$, repeats allowed. Divide $X(n, k)$ into two subsets.
2. 5.2.3B (typo in the book here, should be $s(n, r)$ not $S(n, r)$.)
3. We now prove the Catalan numbers are uniquely determined by the recursion above. Suppose $\left\{d_{n} \mid n \geq 0\right\}$ is a sequence such that $d_{0}=1$ and:

$$
d_{n}=\sum_{k=1}^{n} d_{k-1} d_{n-k} .
$$

Prove by induction that $d_{n}=C_{n}$.
4. Suppose $w=w_{1} w_{2} \cdots w_{n}$ is a permutation of $\{1,2, \ldots, n\}$ written in one-line notation. Saw that w is 231-avoiding if there do not exist indices $i<k<p$ such that $w_{p}<w_{i}<w_{k}$.
a. Write down the 231 avoiding permutations in S_{4}. (Hint: There are 14 of them)
b. Let S_{n}^{231} be the set of 231-avoiding permutations in S_{n}. Prove that the size of S_{n}^{231} satisfies the recursion and conclude from problem 4 that $\#\left(S_{n}^{231}\right)=C_{n}$. Hint: For an arbitrary 231-avoiding permutation w, consider the position of the letter n in w.
5. 5.3.2B. Hints below.

- First use the recursion to prove that $C_{n}>n+2$ for $n>3$.
- Next prove from the definition that $(n+2) C_{n+1}=(4 n+2) C_{n}$
- Suppose C_{n} is prime. Prove that C_{n} divides C_{n+1}.
- Prove that n must then be ≤ 4.

6. 5.3 .8 A
