1. 5.1.6B Let's define $X(n, k)$ to be all the possible products of $n-k$ integers taken from $\{1,2, \ldots, k\}$, repeats allowed. We must show that for $1 \leq k<n$ that

$$
\sum_{a \in X(n, k)} a=S(n, k) .
$$

We proceed by induction on $n$. It's easy to see that $X(2,1)=\{1\}$ and $S(2,1)=1$ so the base case holds.
Now divide $X(n, k)$ into two subsets. The first, call it $A$, is the products that do not include the integer $k$. The second, call it $B$, are the products including $k$. Now $A$ is all products of $n-k$ integers taken from $\{1,2, \ldots, k-1\}$ so by induction the elements in $A$ add up to $S(n-1, k-1)$. Each element of $B$ is of the form $k * y$ where $y$ is a product of $n-k-1$ integers taken from $\{1,2 \ldots, k\}$. So by induction the elements in $B$ add up to $k S(n-1, k)$. Since $X(n, k)=A \sqcup B$ we have:

$$
\sum_{a \in X(n, k)} a=S(n-1, k-1)+k S(n-1, k)
$$

which equals $S(n, k)$ by Theorem 3.4.
2. 5.2.3B (typo in the book here, should be $s(n, r)$ not $S(n, r)$.)

The Stirling number $s(n+1, k+1)$ is the absolute value of the coefficient of $x^{k+1}$ in $[x]_{n+1}$. Cancelling the first $x$ we see it is the coefficient of $x^{k}$ in $(x-1)(x-2) \cdots(x-n)$. Now do the substitution $y=x-1$. Then:

$$
(x-1)(x-2) \cdots(x-n)=y(y-1)(y-2) \cdots(y-n+1)=[y]_{n} .
$$

Thus $s(n+1, k+1)$ is the coefficient of $x^{k}$ in $[y]_{n}$. However by definition we have

$$
\begin{equation*}
[y]_{n}=\sum_{r=1}^{n}(-1)^{r-1} s(n, r) y^{r}=\sum_{r=1}^{n}(-1)^{r-1} s(n, r)(x-1)^{r} \tag{1}
\end{equation*}
$$

Notice there is no $x^{k}$ term in (??) until $r=k$ and the coefficient of $x^{k}$ in $(x-1)^{r}$ is $(-1)^{r-k}\binom{r}{k}$, by the binomial theorem. So the coefficient of $x^{k}$ in (??) is:

$$
\sum_{r=k}^{n}(-1)^{r-1} s(n, r)(-1)^{r-k}\binom{r}{k}=(-1)^{-1-k} \sum_{r=k}^{n} s(n, r)\binom{r}{k}
$$

So taking absolute value we get:

$$
s(n+1, k+1)=\sum_{r=k}^{n}\binom{r}{k} s(n, r)
$$

as desired. Note: I have not been able to find a combinatorial proof but there must be one!
3. This is an easy induction proof, $d_{0}=C_{0}=1$. Now suppose $d_{i}=C_{i}$ for $i<n$. Then:

$$
d_{n}=\sum_{k=1}^{n} d_{k-1} d_{n-k}=\sum_{k-1}^{n} C_{k-1} C_{n-k}
$$

by the inductive hypothesis. But the latter sum is just $C_{n}$ since $C_{n}$ satisfies the same recursion formula.
4.
a. In one-line notation the 231 avoiding permutations in $S_{4}$ are:
$\{1234,1324,2134,3124,3214,1243,2143,1423,1432,4123,4132,4213,4312,4321\}$.
b. Let $A_{n}$ be the number of 231-avoiding permutations in $S_{n}$. Let $1 \leq k \leq n$ and consider the set of 231-avoiding permutations in $S_{n}$ with $\sigma(k)=n$. So in one line notation $\sigma$ looks like:

$$
? ? ? ? ? ? ? n * * * * * * *
$$

where there are $k-1$ question marks and $n-k$ stars. The question marks must represent the numbers $1,2, \ldots, k-1$ and the stars are $k, k+1, \ldots, n-1$, because as soon as a number $\leq k-1$ appears to the right of $n$ then a number $\geq k$ will be to the left and the forbidden 231 pattern appears.

Thus $\sigma$ is 231 avoiding if the question marks form a 231 avoiding permutation of $\{1,2, \ldots, k-1\}$ and the stars form a 231 avoiding permutation of $\{k, k+1, \ldots, n-1\}$. There are $A_{k-1} A_{n-k}$ choices (where $A_{0}$ is defined to be 1). This proves that:

$$
A_{n}=\sum_{k=1}^{n} A_{k-1} A_{n-k}
$$

Since $A_{0}=A_{1}=1$, the previous problem proves $A_{n}=C_{n}$.

## 5. 5.3.2B. Hints below.

- First use the recursion to prove that $C_{n}>n+2$ for $n>3$.
- Next prove from the definition that $(n+2) C_{n+1}=(4 n+2) C_{n}$
- Suppose $C_{n}$ is prime. Prove that $C_{n}$ divides $C_{n+1}$.
- Prove that $n$ must then be $\leq 4$.

Proof: We have the recursion:

$$
C_{n}=C_{0} C_{n-1}+C_{1} C_{n-2}+\cdots+C_{n-1} C_{0}
$$

The RHS has $n$ terms and once $n>3$ we know two of them at least are $>1$. This implies that for $n>3$ that $C_{n}>n+2$.

Now from the definition $C_{n}=\frac{\binom{2 n}{n}}{n+1}$ it follows that:

$$
\begin{aligned}
C_{n+1} & =\frac{\binom{2 n+2}{n+1}}{n+2} \\
& =\frac{\frac{(2 n+2)!}{(n+1)!(n+1)!}}{n+2} \\
& =\frac{(2 n+2)(2 n+1)(2 n)!}{(n+1)(n+1) n!n!(n+2)} \\
& =\frac{(4 n+2)(2 n!)}{(n+1)(n+2) n!n!} \\
& =\frac{4 n+1}{n+2} C_{n}
\end{aligned}
$$

Now assume $C_{n}$ is prime. From above we have that $(n+2) C_{n+1}=(4 n+2) C_{n}$. Since we know $C_{n}>n+2$, then $C_{n}$ must divide $C_{n+1}$ since it cannot divide $n+2$. So $C_{n+1}=k C_{n}$ for some $k$. This gives:

$$
4 n+2=k(n+2)
$$

which is impossible if $k \geq 4$. So $k=1,2,3$ which forces $n$ to be $\leq 4$. Thus the only prime Catalan numbers are $C_{2}$ and $C_{3}$.
6. See back of the book

