Math 353 Homework \#6- Due Wednesday 10/8/14-SOLUTIONS

1. Proof: Let m be the number of partitions of n into exactly k parts $\left(m=p_{k}(n)=p_{k-1}(n)\right)$. Suppose we have a solution of $x_{1}+x_{2}+\cdots+x_{k}=n$ with all the x_{k} positive. We know there are $C(n-1, k-1)$ solutions from Theorem 3.2. Given a solution, if we arrange the x_{i} in nonincreasing order, we get a partition of n with exactly k parts. For example $3+4+2+1=10$ becomes the partition (4, 3, 2, 1). Now for each such partition there are *at most* k ! solutions of the equation that give the same partition, namely we reorder the $\left\{x_{i}\right\}$ in all possible ways. For example the solution $3+4+2+1=10$ has 4 ! different reorderings, all giving the same partition $(4,3,2,1)$. However for the solution $1+3+3+3=10$ there are only 4 distinct reorderings giving the partition $(3,3,3,1)$, namely

$$
1+3+3+3=10,3+1+3+3=10,3+3+1+3=10,3+3+3+1=10
$$

Thus $m \cdot k$! overcounts the number of solutions to $x_{1}+x_{2}+\cdots+x_{k}=n$, and hence $m \cdot k!\geq C(n-1, k-1)$, so $m \geq \frac{1}{k!} C(n-1, k-1)$ as desired.
2. Proof: It seems from the hint that the authors did not mean to require the partitions have distinct parts. So let X be all partitions of n with smallest part k, so $\# X=s_{k}(n)$. Split X into two sets, A and B. Let A be those partitions with exactly one part equal to k, i.e. of the form (\ldots, a, k) with $a>k$. Let B be those partitions with at least two parts of size k, so of the form (\ldots, k, k). Adding one to the final part gives a bijection between A and partitions of $n+1$ with smallest part equal to $k+1$, so $\# A=s_{k+1}(n+1)$. For partitions in B we can remove the last part k and have remaining a partition of $n-k$ which still has smallest part equal to k. For any such partition, adding a part equal to k gives us an element of B, so $\# B=s_{k}(n-k)$. Since X is the disjoint union of A and B we have $s_{k}(n)=s_{k+1}(n+1)+s_{k}(n-k)$.
3. Solution: Here are the partitions of 20 using only $1,4,6,9,11,14,16,19$. There are 31 of them:
$(19,1),(16,4),\left(16,1^{4}\right),(14,6),(14,4,1,1),\left(14,1^{6}\right),(11,9),\left(11,6,1^{3}\right),(11,4,4,1),\left(11,4,1^{5}\right),\left(11,1^{9}\right)$, $(9,9,1,1),(9,6,4,1),\left(9,6,1^{5}\right),\left(9,4,4,1^{3}\right),\left(9,4,1^{7}\right),\left(9,1^{11}\right),(6,6,6,1,1),(6,6,4,4),\left(6,6,4,1^{4}\right),\left(6,6,1^{8}\right)$, $\left(6,4^{3}, 1^{2}\right),\left(6,4,4,1^{6}\right),\left(6,4,1^{10}\right),\left(6,1^{14}\right),\left(4^{5}\right),\left(4^{4}, 1^{4}\right),\left(4^{3}, 1^{8}\right),\left(4^{2}, 1^{12}\right),\left(4,1^{16}\right),\left(1^{20}\right)$

Here are the partitions of 20 with parts differing by at least 2. Also 30. For use in the 2 nd part of the problem note that 20 of them do not use 1 .
$(20),(19,1),(18,2),(17,3),(16,4),(16,3,1),(15,5),(15,4,1),(14,6),(14,5,1),(14,4,2),(13,7)$,
$(13,6,1),(13,5,2),(12,8),(12,7,1),(12,6,2),(12,5,3),(11,9),(11,8,1),(11,7,2)$,
$(11,6,3),(11,5,3,1),(10,8,2),(10,7,3),(10,6,4),(10,6,3,1),(9,7,4),(9,7,3,1),(9,6,4,1),(8,6,4,2)$
Solutions Part II: Partitions of 20 using only $2,3,7,8,12,13,17,18$ are below, there are 20, as expected:
$(18,2),(17,3),(13,7),(13,3,2,2),(12,8),(12,3,3,2),\left(12,2^{4}\right),(8,8,2,2),(8,7,3,2),(8,3,3,3,3)$, $(8,3,3,2,2,2),\left(8,2^{6}\right),\left(7,7,2^{3}\right),(7,7,3,3),\left(7,3^{3}, 2^{2}\right),\left(7,3,2^{5}\right),\left(3^{6}, 2\right),\left(3^{4}, 2^{4}\right),\left(3^{2}, 2^{7}\right),\left(2^{10}\right)$
4. We define a bijection f on the partitions in question so that $f(f(\lambda))=\lambda$ and $f(\lambda) \neq \lambda$. This will group the set into pairs $\{\lambda, f(\lambda)\}$ so we must have an even number in total. Suppose the first part of λ is bigger than the second, so for example $\lambda=(32,8,4,4,2)$. For
$f(\lambda)$ just replace the first part with two parts each half the size, so $f(\lambda)=(16,16,8,4,4)$. If the first two parts of λ are equal, just combine them into one part. For example if $\lambda=(16,16,8,8,4,2,1)$ then $f(\lambda)=(32,8,8,4,2,1)$. It should be obvious that $f(\lambda) \neq \lambda$ and $f(f(\lambda))=\lambda$. Also f preserves the property of having all parts a power of 2 . So the set is divided into pairs $\{\lambda, f(\lambda)\}$ as desired. Note this proof fails for $n=1$, where the statement is not true.
5. We want a bijection between partitions with odd parts and partitions with distinct parts. Suppose $\lambda=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ has distinct parts. Write each $a_{i}=2^{b_{i}} c_{i}$ where c_{i} is odd. Create a partition $f(\lambda)$ by replacing a_{i} with $2^{b_{i}}$ copies of c_{i} and putting them in order. For example:

$$
\lambda=(24,14,12,6,1)=\left(2^{3} * 3,2 * 7,2^{2} * 3,2^{0} * 1\right.
$$

then we get $(3,3,3,3,3,3,3,3,7,7,3,3,3,3,1)$ and putting in order gives:

$$
f(\lambda)=(7,7,, 3,3,3,3,3,3,3,3,3,3,3,3,1)
$$

How we want a map in the other direction. This uses that fact that each number has a base two expansion. So let μ have all odd parts and suppose the odd number a occurs t times. Write $t=2^{i_{1}}+2^{i_{2}}+\cdots+2^{i_{a}}$ with $0 \leq i_{1}<i_{2}<\cdots<i_{a}$. Replacing a^{t} with $\left(2^{i_{1}} a, 2^{i_{2}} a, 2^{i_{3}} a, \ldots\right)$. Here is an example:

$$
\mu=\left(11^{13}, 7^{5}, 3,1^{2}\right)
$$

Now $13=1+4+8$ and $5=1+4$ and $1=1$ and $2=2$ so we get parts $\{11,11 * 4,11 *$ $8,7,7 * 4,3,2\}$ for a partition $(88,44,28,11,7,3,2)$. Check if you do this twice you get back to where you started.
6. Done in class.

