1. 7.2.1B (i) By definition we have: $F_{k}(x)=\sum n^{k} x^{n}$ so taking the derivative and multiplying by x we obtain:

$$
x F_{k}^{\prime}(x)=x \sum n^{k+1} x^{n-1}=\sum n^{k+1} x^{n}
$$

and this is equal to $F_{k+1}(x)$ by definition.
(ii) We prove by induction that

$$
F_{k}(x)=\frac{P_{k}(x)}{(1-x)^{k+1}}
$$

where P_{k} is monic of degree k. The $k=0,1$ cases were done in class. So assume the formula holds for $F_{k}(x)$. Thus:

$$
F_{k}(x)=\frac{x^{k}+\cdots}{(1-x)^{k+1}}
$$

Now use part (i) and the quotient rule:

$$
\begin{aligned}
F_{k+1}(x) & =x F_{k}^{\prime}(x) \\
& =x \frac{(1-x)^{k+1}\left(k x^{k}+\cdots\right)-\left(x^{k}+\cdots\right)\left(-(k+1)(1-x)^{k}\right)}{(1-x)^{2 k+2}} \\
& =x \frac{(1-x)\left(k x^{k}+\cdots\right)-\left(x^{k}+\cdots\right)(-(k+1))}{(1-x)^{k+2}}
\end{aligned}
$$

Check that the coefficicent of x^{k+1} in the numerator is $-k+k+1=1$ and that this is the highest degree term so we have

$$
F_{k+1}(x)=\frac{x^{k+1}+\cdots}{(1-x)^{k+2}}
$$

as desired.
2. 7.2.2B Let a_{n} be the sum of the first n cubes. So $a_{0}=0$ and

$$
a_{n+1}=a_{n}+(n+1)^{3}=a_{n}+n^{3}+3 n^{2}+3 n+1 .
$$

Hence:
(1) $\sum_{n=0}^{\infty} a_{n+1} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} n^{3} x^{n}+3 \sum_{n=0}^{\infty} n^{2} x^{n}+3 \sum_{n=0}^{\infty} n x^{n}+\sum_{n=0}^{\infty} x^{n}$.

Let $f(x)$ be the generating function desired. So the LHS of (1) is $\frac{1}{x} f(x)$. Using our knowledge of the generating functions for the sequences $\{1\},\{n\},\left\{n^{2}\right\}$ and $\left\{n^{3}\right\}$ we obtain:

$$
\frac{1}{x} f(x)=f(x)+\frac{x\left(1+4 x+x^{2}\right)}{(1-x)^{4}}+\frac{3 x(1+x)}{(1-x)^{3}}+\frac{3 x}{(1-x)^{2}}+\frac{1}{1-x} .
$$

Solving for $f(x)$ gives:

$$
f(x)=\frac{x\left(x^{2}+4 x+1\right)}{(1-x)^{5}}
$$

3. 7.5 .2 B

If our sequence starts with a consonant (21 choices) the remaining $\mathrm{n}-1$ terms are arbitrary (as long as they follow the rule). If it starts with a vowel (5 choices) the next one must be a consonant (21 choices) and then the remaining $n-2$ are arbitrary. This proves the recursion:

$$
a_{n}=21 a_{n-1}+105 a_{n-2} .
$$

$a_{1}=26$ is easy. For length two the only thing outlawed is vowelvowel, which is 25 choices. So $a_{2}=26^{2}-25=651$.

The polynomial is $x^{2}-21 x-105=0$. This has roots

$$
\frac{21 \pm \sqrt{861}}{2}
$$

So a solution is of the form:

$$
a_{n}=A\left(\cdot \frac{21+\sqrt{861}}{2}\right)^{n}+B \cdot\left(\frac{21-\sqrt{861}}{2}\right)^{n} .
$$

We can solve for A and B using the initial conditions! You should obtain:

$$
A=\frac{1}{2}+\frac{31}{1722} \sqrt{861}, B=A=\frac{1}{2}-\frac{31}{1722} \sqrt{861}
$$

4. The "tower of Hanoi" is a puzzle consisting of 3 vertical posts mounted on a board and some number n rings of different diameters. In standard form all rings are stacked on one post in order with the largest ring on the bottom. A solution consists of first choosing a second post on which the rings are to be stacked, then moving the rings from post to post in such a way that a larger ring is never placed on top of a smaller ring. The goal is to get all the rings to the second post. Let a_{n} be the minimum number of moves to solve a puzzle with n rings.
a. Explain why $a_{n+1}=2 a_{n}+1$.
b. Find the number of moves needed for n rings. In particular what if $n=5$.

Suppose you have pegs A, B, C and you are trying to move the rings from A to B. A little thought shows that a successful solution must first move the top $n-1$ rings over to C, then the biggest one moves from A to B, then the $n-1$ rings must move from C to B. This is clear because the largest ring can only move onto an empty peg. This gives us the recursion $a_{n}=2 a_{n-1}+1$. So $a_{1}=1, a_{2}=3, a_{3}=7, a_{4}=15, a_{5}=32$.

It seems these numbers are of the form $a_{n}=2^{n}-1$. We can easily prove this is the correct formula using induction. Suppose it is true for a_{n}. Then:

$$
a_{n+1}=2 a_{n}+1=2\left(2^{n}-1\right)+1=2^{n+1}-1
$$

as desired.
5. 8.1.1B

This generating function is counting partitions of 24 with distinct prime parts. There are 5 , namely $(19,5),(19,3,2),(17,7),(17,5,2),(13,11)$.
6. 8.1.3B i. We get $a(n)=b(n)$ and the values are $1,2,2,4,5,7,9,13$ for n running 1 to 8 .
ii. The generating function for $\{a(n)\}$ is:

$$
A(x)=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{5}\right)\left(1-x^{7}\right)\left(1-x^{8}\right) \cdots} .
$$

The generating function for $\{b(n)\}$ is:

$$
B(x)=\left(1+x+x^{2}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}+x^{6}\right)\left(1+x^{4}+x^{8}\right) \cdots .
$$

We have the identity

$$
1+x^{k}+x^{2 k}=\frac{1-x^{3 k}}{1-x^{k}}
$$

