1. Let $\sigma=(1,2,3)(4,5,6)(7,8)(9,10,11,12)$ and $\tau=(1,2,3,4)(5,6,7)(8,9,10,11,12)$.

- Find $\sigma \tau, \tau \sigma, \tau^{-1}$, and $\tau \sigma \tau^{-1}$.
- The order of an element g is the smallest nonnegative integer n so that $g^{n}=e$. What is the order of an n-cycle $(1,2,3,4, \ldots, n)$.
- Calculate the order of σ and τ.
- Write σ in 1 -line notation. Is it 231-avoiding?

2. Prove that every group with 4 elements is isomorphic to either the group Z_{4} or the Klein group V.
3. 11.3.2B
4. 11.4.1B
5. 11.5.3.B
6. Calculate the orders of all the elements of the group $Z_{12}=\{0,1,2, \ldots, 11\}$ under addition modulo 12 .
7. Find a 2×2 invertible matrix which has order 3 . Find one which has infinite order.
8. For a group G, the center $Z(G)$ is defined as the elements that commute with every other element. That is:

$$
Z(G)=\{z \in G \mid z g=g z \forall g \in G\} .
$$

Note that $e \in Z(G)$ so is is nonempty. Prove that $Z(G)$ is always a subgroup, and find the center of the group of symmetries of the square.

