1. 12.2 .2 B
2. Let H and K be two subgroups of a group G. Prove that their intersection $H \cap K$ is also a subgroup. For extra credit prove that the union $H \cup K$ is never a subgroup except in the trivial situation where $H \subseteq K$ or $K \subseteq H$.
3. Let G be a group and $g \in G$. Define the centralizer of g, denoted $C_{G}(g)$, as the elements that commute with g,namely:

$$
C_{G}(g)=\{x \in G \mid x g=g x\} .
$$

a. Prove that $C_{G}(g)$ is a subgroup of G.
b. Let $\sigma=(1,2)(3,4) \in S_{4}$ Calculate $C_{S_{4}}(\sigma)$.
c. Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in G L_{2}(\mathbb{Q})$. Calculate the centralizer of A.
d. Describe the center $Z(G)$ in terms of centralizers.
4. Calculate the conjugacy classes in the dihedral group D_{8}. Repeat for D_{10}.
5. 12.3 .2 A
6. 12.4.1B
7. Let $G=S_{4}$ be the symmetric group on 4 letters. Let $H=\{e,(12)(34),(13)(24),(14)(23)\}$ and let $K=\{e,(12),(34),(12)(34)\}$. Verify that H and K are both subgroups of S_{4} and both are isomorphic to the Klein 4 group. Next compute the left and right cosets of H. Repeat for K. What do you notice? .

