Math 353 Homework #9- SOLUTIONS

1. 12.2.2B

The integers \mathbb{Z} are acting on G by $n \triangleright g = g_0^n g$. So $0 \triangleright g = g_0^0 g = eg = g$ and the first axiom is satisfied. Let $n_1, n_2 \in \mathbb{Z}$. Then :

$$n_1 \triangleright n_2 \triangleright g = n_1 \triangleright g_0^{n_2} g = g_0^{n_1} g_0^{n_2} g = g_0^{n_1 + n_2} g = (n_1 + n_2) \triangleright g$$

so the second axiom is satisfied.

2. Let H and K be two subgroups of a group G. Prove that their intersection $H \cap K$ is also a subgroup. For extra credit prove that the union $H \cup K$ is never a subgroup except in the trivial situation where $H \subseteq K$ or $K \subseteq H$.

Let $x, y \in H \cap K$. Since $H \leq G$ we know x^{-1} and xy are in H. Since $K \leq G$ we know x^{-1} and xy are in K. Thus x^{-1} and xy are in $H \cap K$ and so $H \cap K$ is a subgroup.

For the extra credit suppose H and K are subgroups and neither $H \subseteq K$ nor $K \subseteq H$. We must show $H \cup K$ is not a subgroup. By our assumption we can choose $h \in H$ with $h \notin K$. Also choose $k \in K$ with $k \notin H$. So $h, k \in H \cup K$ and we will show $hk \notin H \cup K$. If $hk = h' \in H$ then $k = h^{-1}h' \in H$, a contradiction. Similarly if $hk = k' \in K$ then $h = k^{-1}k' \in K$ a contradiction. Thus hk is in neither h nor K, so not in $H \cup K$. Thus $H \cup K$ is not closed under multiplication, so is not a subgroup.

3. Let G be a group and $g \in G$. Define the *centralizer* of g, denoted $C_G(g)$, as the elements that commute with q, namely:

$$C_G(g) = \{ x \in G \mid xg = gx \}.$$

- a. Prove that $C_G(g)$ is a subgroup of G.
- b. Let $\sigma = (1,2)(3,4) \in S_4$ Calculate $C_{S_4}(\sigma)$.
- c. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{Q})$. Calculate the centralizer of A. d. Describe the center Z(G) in terms of centralizers.

3a. First observe eg = ge = g so $e \in C_G(g)$. Now suppose $x, y \in C_G(g)$ so xg = gx and yg = gy by definition. Then xyg = xgy = gxy so $xy \in C_G(g)$. Take the equation xg = gx and multiply both sides by x^{-1} on the left and on the right we get: $gx^{-1} = x^{-1}g$ so $x^{-1} \in C_G(g)$. Thus $C_G(g)$ is closed under multiplication and taking inverses so $C_G(q) \leq G$.

3b. $C_{S_4}(\sigma) = \{e, (1, 2), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 3, 2, 4), (1, 4, 2, 3)\}$. Notice this centralizer is isomorphic to D_8 .

c. The matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is in the centralizer of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ if and only if it is invertible and:
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Multiplying out we get:

$$\left(\begin{array}{cc} a & a+b \\ c & c+d \end{array}\right) = \left(\begin{array}{cc} a+c & b+d \\ c & d \end{array}\right).$$

This gives us 4 equations which we solve to show that c = 0 and a = d. So the centralizer is:

$$\left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \mid a \neq 0 \right\}$$

 $\mathbf{2}$

where the condition on a ensures the matrix is invertible.

d. The center of G is the intersection of the centralizers of the elements of G.

4. Calculate the conjugacy classes in the dihedral group D_8 . Repeat for D_{10} .

For D_8 you should get:

$$\{e\}, \{r, r^3\}, \{r^2\}, \{s, sr^2\}, \{sr, sr^3\}.$$

For D_{10} you should get:

$$\{e\}, \{r, r^4\}, \{r^2, r^3\}, \{s, sr, sr^2, r^3, sr^4\}.$$

Notice all 5 reflections are conjugate for the symmetries of a pentagon whereas for the square there are two conjugacy classes. Can you see why geometrically?

5. 12.3.2A

See back of book.

6. 12.4.1B

i. To get an element of X we can choose anything we like for $(g_1, g_2, g_3, \ldots, g_{p-1})$. Once we do this our choice of g_p is forced on us, since we need $g_1g_2 \cdots g_p = e$ then we must choose $g_p = g_{p-1}^{-1}g_{p-2}^{-1}\cdots g_1^{-1}$. Thus X has $|G|^{p-1}$ elements.

ii. It is clear that

$$0 \triangleright (g_1, g_2, g_3, \dots, g_p) = (g_1, g_2, g_3, \dots, g_p) = p \triangleright (g_1, g_2, g_3, \dots, g_p)$$

so the action of Z_p is well-defined. One easily checks that

$$a \triangleright b \triangleright (g_1, g_2, g_3, \dots, g_p) = (a + b) \triangleright (g_1, g_2, g_3, \dots, g_p).$$

Rotating by a and then by b is the same as rotating by a + b. Finally we need to check that the rotated tuples are still in X. Multiply the equation

$$g_1g_2\cdots g_p=e$$

by g_1^{-1} on the left and right to get:

$$g_2g_3\cdots g_pg_1=e$$

Repeating with g_2 etc... shows us that all the cyclic permutations remain in X.

If any $g_i \neq g_j$ then rotating by j-i will move g_i into the j position and so we will have a different tuple. Thus the only elements fixed by all of Z_p are tuples of the form (g, g, g, \ldots, g) .

iii. We know from the orbit stabilizer theorem that all the orbits have order dividing the order of Z_p . We know from part i that X is a multiple of p. Since we have an orbit (e, e, \ldots, e) of size 1, there must be at least p-1 other orbits of size 1. But orbits of size one are tuples (g, g, \ldots, g) with $g^p = e$. Thus G has at least p-1 elements of order p.

7. Let $G = S_4$ be the symmetric group on 4 letters. Let $H = \{e, (12)(34), (13)(24), (14)(23)\}$ and let $K = \{e, (12), (34), (12)(34)\}$. Verify that H and K are both subgroups of S_4 and both are isomorphic to the Klein 4 group. Next compute the left and right cosets of H. Repeat for K. What do you notice?

Left and right cosets of H are the same:

$$eH = He = \{e, (12)(34), (13)(24), (14)(23)\}$$

$$(12)H = H(12) = \{(12), (34), (1324), (1423)\}$$

$$(13)H = H(13) = \{(13), (1234), (24), (1432)\}$$

$$(14)H = H(14) = \{(14), (1243), (1342), (23)\}$$

$$(123)H = H(123) = \{(123), (134), (243), (142)\}$$

$$(124)H = H(124) = \{(124), (143), (132), (234)\}$$

Left cosets of K are:

$$eK = \{e, (12), (34), (12)(34)\}$$

$$(13)K = \{(13), (123), (134), (1234)\}$$

$$(14)K = \{(14), (124), (143), (1243)\}$$

$$(24)K = \{(24), (142), (243), (1432)\}$$

$$(23)K = \{(23), (132), (234), (1342)\}$$

$$(13)(24)K = \{(13)(24), (1423), (1324), (14)(23)\}$$

Right cosets of K are:

$$Ke = \{e, (12), (34), (12)(34)\}$$

$$K(13) = \{(13), (132), (143), (1432)\}$$

$$K(23) = \{(23), (123), (243), (1243)\}$$

$$K(24) = \{(24), (124), (234), (1234)\}$$

$$K(14) = \{(14), (142), (134), (1342)\}$$

$$K(13)(24) = \{(13)(24), (1324), (1423), (14)(23)\}$$