1. 12.2 .2 B

The integers \mathbb{Z} are acting on G by $n \triangleright g=g_{0}^{n} g$. So $0 \triangleright g=g_{0}^{0} g=e g=g$ and the first axiom is satisfied. Let $n_{1}, n_{2} \in \mathbb{Z}$. Then :

$$
n_{1} \triangleright n_{2} \triangleright g=n_{1} \triangleright g_{0}^{n_{2}} g=g_{0}^{n_{1}} g_{0}^{n_{2}} g=g_{0}^{n_{1}+n_{2}} g=\left(n_{1}+n_{2}\right) \triangleright g
$$

so the second axiom is satisfied.
2. Let H and K be two subgroups of a group G. Prove that their intersection $H \cap K$ is also a subgroup. For extra credit prove that the union $H \cup K$ is never a subgroup except in the trivial situation where $H \subseteq K$ or $K \subseteq H$.

Let $x, y \in H \cap K$. Since $H \leq G$ we know x^{-1} and $x y$ are in H. Since $K \leq G$ we know x^{-1} and $x y$ are in K. Thus x^{-1} and $x y$ are in $H \cap K$ and so $H \cap K$ is a subgroup.

For the extra credit suppose H and K are subgroups and neither $H \subseteq K$ nor $K \subseteq H$. We must show $H \cup K$ is not a subgroup. By our assumption we can choose $h \in H$ with $h \notin K$. Also choose $k \in K$ with $k \notin H$. So $h, k \in H \cup K$ and we will show $h k \notin H \cup K$. If $h k=h^{\prime} \in H$ then $k=h^{-1} h^{\prime} \in H$, a contradiction. Similarly if $h k=k^{\prime} \in K$ then $h=k^{-1} k^{\prime} \in K$ a contradiction. Thus $h k$ is in neither h nor K, so not in $H \cup K$. Thus $H \cup K$ is not closed under multiplication, so is not a subgroup.
3. Let G be a group and $g \in G$. Define the centralizer of g, denoted $C_{G}(g)$, as the elements that commute with g,namely:

$$
C_{G}(g)=\{x \in G \mid x g=g x\} .
$$

a. Prove that $C_{G}(g)$ is a subgroup of G.
b. Let $\sigma=(1,2)(3,4) \in S_{4}$ Calculate $C_{S_{4}}(\sigma)$.
c. Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in G L_{2}(\mathbb{Q})$. Calculate the centralizer of A.
d. Describe the center $Z(G)$ in terms of centralizers.

3a. First observe $e g=g e=g$ so $e \in C_{G}(g)$. Now suppose $x, y \in C_{G}(g)$ so $x g=g x$ and $y g=g y$ by definition. Then $x y g=x g y=g x y$ so $x y \in C_{G}(g)$. Take the equation $x g=g x$ and multiply both sides by x^{-1} on the left and on the right we get: $g x^{-1}=x^{-1} g$ so $x^{-1} \in C_{G}(g)$. Thus $C_{G}(g)$ is closed under multiplication and taking inverses so $C_{G}(g) \leq G$.

3b. $C_{S_{4}}(\sigma)=\{e,(1,2),(3,4),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3),(1,3,2,4),(1,4,2,3)\}$. Notice this centralizer is isomorphic to D_{8}.
c. The matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the centralizer of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ if and only if it is invertible and:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Multiplying out we get:

$$
\left(\begin{array}{ll}
a & a+b \\
c & c+d
\end{array}\right)=\left(\begin{array}{cc}
a+c & b+d \\
c & d
\end{array}\right) .
$$

This gives us 4 equations which we solve to show that $c=0$ and $a=d$. So the centralizer is:

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a \neq 0\right\}
$$

where the condition on a ensures the matrix is invertible.
d. The center of G is the intersection of the centralizers of the elements of G.
4. Calculate the conjugacy classes in the dihedral group D_{8}. Repeat for D_{10}.

For D_{8} you should get:

$$
\{e\},\left\{r, r^{3}\right\},\left\{r^{2}\right\},\left\{s, s r^{2}\right\},\left\{s r, s r^{3}\right\}
$$

For D_{10} you should get:

$$
\{e\},\left\{r, r^{4}\right\},\left\{r^{2}, r^{3}\right\},\left\{s, s r, s r^{2}, r^{3}, s r^{4}\right\} .
$$

Notice all 5 reflections are conjugate for the symmetries of a pentagon whereas for the square there are two conjugacy classes. Can you see why geometrically?
5. 12.3 .2 A

See back of book.
6. 12.4.1B
i. To get an element of X we can choose anything we like for $\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p-1}\right)$. Once we do this our choice of g_{p} is forced on us, since we need $g_{1} g_{2} \cdots g_{p}=e$ then we must choose $g_{p}=g_{p-1}^{-1} g_{p-2}^{-1} \cdots g_{1}^{-1}$. Thus X has $|G|^{p-1}$ elements.
ii. It is clear that

$$
0 \triangleright\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p}\right)=\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p}\right)=p \triangleright\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p}\right)
$$

so the action of Z_{p} is well-defined. One easily checks that

$$
a \triangleright b \triangleright\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p}\right)=(a+b) \triangleright\left(g_{1}, g_{2}, g_{3}, \ldots, g_{p}\right) .
$$

Rotating by a and then by b is the same as rotating by $a+b$. Finally we need to check that the rotated tuples are still in X. Multiply the equation

$$
g_{1} g_{2} \cdots g_{p}=e
$$

by g_{1}^{-1} on the left and right to get:

$$
g_{2} g_{3} \cdots g_{p} g_{1}=e
$$

Repeating with g_{2} etc... shows us that all the cyclic permutations remain in X.
If any $g_{i} \neq g_{j}$ then rotating by $j-i$ will move g_{i} into the j position and so we will have a different tuple. Thus the only elements fixed by all of Z_{p} are tuples of the form (g, g, g, \ldots, g).
iii. We know from the orbit stabilizer theorem that all the orbits have order dividing the order of Z_{p}. We know from part i that X is a multiple of p. Since we have an orbit (e, e, \ldots, e) of size 1 , there must be at least $p-1$ other orbits of size 1 . But orbits of size one are tuples (g, g, \ldots, g) with $g^{p}=e$. Thus G has at least $p-1$ elements of order p.
7. Let $G=S_{4}$ be the symmetric group on 4 letters. Let $H=\{e,(12)(34),(13)(24),(14)(23)\}$ and let $K=\{e,(12),(34),(12)(34)\}$. Verify that H and K are both subgroups of S_{4} and both are isomorphic to the Klein 4 group. Next compute the left and right cosets of H. Repeat for K. What do you notice?

Left and right cosets of H are the same:

$$
\begin{aligned}
e H=H e & =\{e,(12)(34),(13)(24),(14)(23)\} \\
(12) H=H(12) & =\{(12),(34),(1324),(1423)\} \\
(13) H=H(13) & =\{(13),(1234),(24),(1432)\} \\
(14) H=H(14) & =\{(14),(1243),(1342),(23)\} \\
(123) H=H(123) & =\{(123),(134),(243),(142)\} \\
(124) H=H(124) & =\{(124),(143),(132),(234)\}
\end{aligned}
$$

Left cosets of K are:

$$
\begin{aligned}
e K & =\{e,(12),(34),(12)(34)\} \\
(13) K & =\{(13),(123),(134),(1234)\} \\
(14) K & =\{(14),(124),(143),(1243)\} \\
(24) K & =\{(24),(142),(243),(1432)\} \\
(23) K & =\{(23),(132),(234),(1342)\} \\
(13)(24) K & =\{(13)(24),(1423),(1324),(14)(23)\}
\end{aligned}
$$

Right cosets of K are:

$$
\begin{aligned}
K e & =\{e,(12),(34),(12)(34)\} \\
K(13) & =\{(13),(132),(143),(1432)\} \\
K(23) & =\{(23),(123),(243),(1243)\} \\
K(24) & =\{(24),(124),(234),(1234)\} \\
K(14) & =\{(14),(142),(134),(1342)\} \\
K(13)(24) & =\{(13)(24),(1324),(1423),(14)(23)\}
\end{aligned}
$$

