Name:

Math 353 Midterm Exam - October 17, 2014
Instructions: You may not use any notes, books, calculators, etc... It is ok if your final answers include binomial coefficients and if you do not multiply out exponentials.

1. (55 points) Short answer, little or partial credit.
a. Define a derangement.
b. A class of 20 students wishes to elect a president, vice president, and three senators. How many ways can this be done?
c. A five-card poker hand is dealt. What is the probability of getting two-pair? (for example AATT3 is two-pair but AAATT is not, it is a full-house.)
d. Let $\sigma=(123)(45)(678)$ and $\tau=(1568)(234)(7)$ be elements of the symmetric group S_{8}.. Write the products $\sigma \tau$ and σ^{2} in cycle notation.
e. Let $S(n, k)$ denote the Stirling number of the second kind. Calculate $S(5,2)$.
f. How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=15$ where the x_{i} are nonnegative integers?
g. How many triangulations are there of a octagon?
h. Calculate $p(8,3)$, the number of partitions of 8 with less than or equal to three parts.
i. A fair coin is tossed 6 times. What is the probability of getting at least 4 heads?
j. A biased coin comes up heads with probability 0.8 . If it is tossed 6 times what is the probability of getting at least 4 heads.
k. Find the generating function for the sequence $a_{n}=n$.
2. (15 points) A bag contains 3 red, 2 blue and 6 green marbles. A marble is sampled and replaced 7 times. Find the probability that all three colors have already been seen.
3. (15 points) a. Define the Stirling number of the second kind, $S(n, k)$.
b. Give a combinatorial proof of the identity: $S(n+1, k+1)=\sum_{i=k}^{n}\binom{n}{i} S(i, k)$.
4. (15 points) Consider the sequence given by $a_{1}=8, a_{2}=46$ and $a_{n}=7 a_{n-1}-10 a_{n-2}$ for $n \geq 3$. Solve the recursion to find a formula for a_{n}.
