Practice homework 2

Problem 1:
Apply optimization method and find (if possible) the value of x and y that optimize the value of the given function. What is the optimal value?

[a] \(f(x, y) = 5x^2 + 16xy + 14y^2 - 4x - 4y + 20 \)

[b] \(f(x, y) = x^2 - 2y^2 + 2x + 4y - 5 \)

[c] \(f(x, y) = x^2 - 4xy + 6y^2 + 2x + 12 \)

[d] \(f(x, y) = 5x^2 + 2y^2 - 6xy + 2x - 2y + 1 \)

Problem 2: (*)
Find the minimum value of the following function. Which are the values of x and y that make f achieve this optimal result?

\[f(x, y) = x^4 + 2y^2 - 2x^2y - 4y + 5 \]

(hint: \(f_x = 4x^3 - 4xy = 4x(x^2 - y) \). This is equal to zero only if \(x = 0 \) or \(y = x^2 \))

(hint: do not be afraid)
Solution:

Problem 1:

[a] \(f_x = 10x + 16y - 4 \), \(f_y = 16x + 28y - 4 \), \(f_{xx} = 10 \), \(f_{yy} = 28 \), \(f_{xy} = 16 \)

\[D = (10)(28) - 16^2 = 24 > 0 \], \(f_{xx} > 0 \), therefore \(f \) has a (local) minimum.

Solve \(f_x = f_y = 0 \) we get \(x = 2, y = -1 \) and minimum \(f \) is \(f(2,-1) = 18 \).

[b] \(D = (2)(-4) - 0^2 < 0 \), no optimal solution.

[c] There is a minimal solution \(x = -3, y = -1, f(-3,-1) = 9 \)

[d] The optimal solution is \(x = 1, y = 2, f(1,2) = 0 \).

Problem 2:

\(f_x = 4x^3 - 4xy \), \(f_y = 4y - 2x^2 - 4 \)

Like in the hint, when we solve \(f_x = 0 \) we have either \(x = 0 \) or \(y = x^2 \).

If \(x = 0 \), solve \(f_y = 4y - 4 = 0 \) we get \(y = 1 \).

If \(y = x^2 \) then the 2\(^{nd} \) equation becomes \(4x^2 - 2x^2 - 4 = 0 \),
which means \(x^2 = 2 \) and \(x = \pm \sqrt{2} \) and \(y = 2 \).

To check those candidates, we compute

\(f_{xx} = 12x^2 - 4y \), \(f_{yy} = 4 \), \(f_{xy} = -4x \)

For \(x = 0, y = 1 \), we see that \(D = (-4)(4) - 0 = -16 \). Not a solution.

For \(x = \pm \sqrt{2}, y = 2 \), we see that \(D = (16)(4) - 32 = 32 > 0 \).

Conclusion, there are 2 solutions \((x = \sqrt{2}, y = 2) \) and \((x = -\sqrt{2}, y = 2) \), both gives the minimum value \(f = 1 \).