Homework 2
due on 1st class of week 8

Problem 1 (3 points)
Compute derivatives of the following functions using quotient rule:

[a] \(f(x) = \frac{x}{2x+5} \)
[b] \(f(x) = \frac{5x+7}{2-x} \)
[c] \(f(x) = \frac{x+1}{x^2+1} \)

Solution:
[a] \(u = x, u' = 1; v = 2x+5, v' = 2; \)
\[f'(x) = \frac{(1)(2x+5)-(x)(2)}{(2x+5)^2} = \frac{5}{(2x+5)^2} \]

[b] \(u = 5x+7, u' = 5; v = 2-x, v' = -1; \)
\[f'(x) = \frac{(5)(2-x)-(5x+7)(-1)}{(2-x)^2} = \frac{17}{(2-x)^2} \]

[c] \(u = x+1, u' = 1; v = x^2+1, v' = 2x; \)
\[f'(x) = \frac{(1)(x^2+1)-(x+1)(2x)}{(x^2+1)^2} = \frac{-x^2-2x+1}{(x^2+1)^2} \]

Problem 2 (3 points)
Compute derivatives of the following functions using chain rule:

[a] \(f(x) = (x^2+5)^8 \)
[b] \(f(x) = \sqrt{x^4+10x^2+16} \)

Solution:
[a] \(f'(x) = 8(x^2+5)^7(2x) = 16x(x^2+5)^7 \)

[b] \(f'(x) = \frac{4x^3+20x}{2\sqrt{x^4+10x^2+16}} = \frac{2x^3+10x}{\sqrt{x^4+10x^2+16}} \)

Problem 3 (4 points)
Given the following relation: \(x^3+y^2-4=x^2+y \) (almost identical to the example in lecture)

[a] Compute implicit derivative \(\frac{dy}{dx} \) (or \(y' \)).

[b] Check that \(x = 2, y = 1 \) satisfy the relation

[c] Evaluate \(y' \) at \(x = 2, y = 1 \) (just plug these values in the answer you get for [a]).

[d] Find the tangent line of the curve (i.e. graph of this relation) at \(x = 2, y = 1 \) (hint: you know the slope from [c], and you know the point, use point-slope equation).

Solution:
[a] Differentiate both sides: \(3x^2+2yy' = 2x+y' \), which implies \(2y-1)y' = 2x-3x^2 \)
This yields: \(y' = \frac{2x-3x^2}{2y-1} \)

[b] Replace \(x \) by 2, \(y \) by 1: \((2)^3+(1)^2-4=(2)^2+(1) \). CORRECT!

[c] From [a], replace \(x = 2, y = 1 \), the result is \(y' = -8 \)

[d] tangent line: \(y = -8(x-2) + 1 = -8x + 17 \)