Chapter 1
Functions, Graphs and Limits

Functions
A function is a rule that assigns to each object in a set A exactly one object in a set B. The set A is called the domain of the function and the set of assigned objects in B is called the range.

Notations: \(f(x) \) or \(y = f(x) \)

Composition of functions (\(f \circ g \)): \(f(g(x)) \) combine 2 or more functions in a chained order.

Example: in lecture

Topics: determine the domain and the range of a function

Domain of a function \(f \): the set of all values of \(x \) for which \(f(x) \) is defined (can be computed)

Hint: exclude values that lead to dividing zero or taking square root of a negative quantity.

Range of a function \(f \): all the values that can be presented as the output of \(f \) corresponding to some input \(x \)

Topics: functional model
Given a relation between 2 quantities \(x \) and \(y \), find out the function \(f \) such that: \(y = f(x) \).

explicit problem: the relation is interpreted straight forward.

 For example: compute the circumstance of a circle, knowing its radius.

 profit function.

implicit problem: need to do some algebra to find out the function.

Graph of a function
Present the function geometrically in a rectangular coordinate system, as a collection of all points \((x,y)\) where \(x \) is in the domain of \(f \) and \(y = f(x) \). In other words, all the points \((x,f(x))\)

By looking at the graph, one can tell if the function is continuous, piece-wised continuous, differentiable, ...

Topics:
Find the \(x \) and \(y \) intercepts

\(x _intercept \): the point where the graph hits the \(x \) axis

\(y _intercept \): the point(s) where the graph hits the \(y \) axis

To compute \(y _intercept \): put \(x = 0 \), compute \(y \).

To compute \(x _intercept \): put \(y = 0 \), solve for \(x \). (equation solving problem)

Linear Functions
Function formula: \(f(x) = mx + b \) or \(y = mx + b \) where \(m \) and \(b \) are two constants.

The graph of a linear function is a straight line and \(m \) is also called *slope*

Note: the \(y _intercept \) is \((0,b)\)

Topics: linear equations
solve equation \(mx + b = 0 \)

Form \(y = mx + b \) can be implied as slope-intercept form of equation of a line

Topics: the slope of a line

\[
\text{slope} = \frac{\text{change in } x}{\text{change in } y} = \frac{\Delta x}{\Delta y} = \frac{y_2 - y_1}{x_2 - x_1}
\]

The point-slope form of the equation of a line: \(y - y_0 = m(x - x_0) \)

Topics: equation of a line going through 2 separate points \((x_1,y_1)\) and \((x_2,y_2)\)
Topics: Parallel and Perpendicular Lines

\((L_1) \ y = m_1 x + b_1 \) and \((L_2) \ y = m_2 x + b_2 \)

\(L_1 \) and \(L_2 \) are parallel iff \(m_1 = m_2 \)

\(L_1 \) and \(L_2 \) are perpendicular iff \(m_1 = \frac{-1}{m_2} \)

Quadratic Equations

solve the equation: \(a x^2 + b x + c = 0 \) where \(a, b, c \) are constants

discriminant \(\Delta = b^2 - 4ac \)

if \(\Delta < 0 \) equation has no solutions.

if \(\Delta = 0 \) equation has one solution \(x = \frac{-b}{2a} \)

if \(\Delta > 0 \) equation has 2 distinct solutions: \(x_1 = \frac{-b - \sqrt{\Delta}}{2a} \) and \(x_2 = \frac{-b + \sqrt{\Delta}}{2a} \)

Graph of a quadratic function \(a x^2 + b x + c \) is a parabola