Chapter 3
Applications of The Derivative

Increasing and Decreasing
Let $f(x)$ be a function defined on the interval $a < x < b$.

If $f'(x) > 0$ for all values of x in the interval, then f is increasing on the interval.

If $f'(x) < 0$ for all values of x in the interval, then f is decreasing on the interval.

Topics: determine the intervals of increase and decrease
(refer to lecture for completed examples)
- Compute f''.
- Find all values of x for which f' equals zero or f'' is not defined.
- List all these values on the first row of a chart-table. List all the terms on the first column.
- Determine the $[+]$ and $[-]$ signs on each intervals.
- Determine the sign of f'' by counting the number of $[-]$ signs on each interval. An odd number of $[-]$ signs yields a $[-]$. An even number of $[-]$ signs yield a $[+]$.

Note: this method is slightly different from the one presented in textbook

Local maximum and local minimum
A function f has a local maximum (minimum) at $x = c$ if $f(z) \leq f(c)$ ($f(z) \geq f(c)$, respectively) for all values of z in a neighborhood of c.

Topics: find local max and local min
First, compute f'. If the sign of f' changes from $[-]$ to $[+]$, it's a local maximum; similarly, if the sign changes from $[+]$ to $[-]$, it's a local minimum.

Topics: find global max and global min
To find global maximum, we only have to find all the local max, then compare with the values of f on the boundary, take the largest. Similar for global minimum.

Concavity
Given a function f, 2nd derivative f''.

If $f''(x) > 0$ for all values of x in the interval $a < x < b$ then f is concave up on the interval.

If $f''(x) < 0$ for all values of x in the interval $a < x < b$ then f is concave down on the interval.

Topics: optimization
Model the objective quantity as a function $f(x)$ of some variable x. Determine the suitable range of the values of x. Solve the optimization problem by finding the global maximum or minimum of the function $f(x)$.